Shark Conservation: Global Threats, Local Concerns

Total Page:16

File Type:pdf, Size:1020Kb

Shark Conservation: Global Threats, Local Concerns Shark conservation: global threats, local concerns Chip Cotton, PhD Virginia Institute of Marine Science A little taxonomy… or “What is a shark anyway?” What is a “shark” anyway? Chondrichthyans = cartilagenous fishes – Sharks, skates, rays, and chimaeras CHONDRICHTHYAN What is a “shark” anyway? Chondrichthyans = sharks, skates, rays, chimaeras •Holocephalans – fixed upper jaw What is a “shark” anyway? Chondrichthyans = sharks, skates, rays, chimaeras •Holocephalans = chimaeras •Elasmobranchs – protrusible upper jaw What is a “shark” anyway? Chondrichthyans = sharks, skates, rays, chimaeras •Holocephalans = chimaeras •Elasmobranchs = sharks, skates, rays – Batoids – Gills ventral, eyes dorsal, pectoral fins attached to the head Torpediniformes Pristiformes Myliobatiformes Rajiformes What is a “shark” anyway? Chondrichthyans = sharks, skates, rays, chimaeras •Holocephalans = chimaeras •Elasmobranchs = sharks, skates, rays – Batoids – skates and rays – Selachii – 5-7 gills on each side of the head, pectoral fins NOT fused to the head “Local” species VIMS Long-term Shark Monitoring Survey • 1973 – present (one of the longest-running, fishery- independent shark monitoring surveys) • 9 standard stations in Chesapeake Bay and Virginia coastal waters • Sampled monthly for 4-6 months per year (summer fauna) • 100 hook longline • Approx. 1.25 nautical miles • Fished for 4 hours • Baited with Atlantic menhaden (Brevoortia tyrannus) Romine et al. 2010 Sampling Large Coastal Shark Abundance 0.6 0.5 protocols 0.4 0.3 0.2 • Each fish is measured, sexed, tissue sampled, LogCPUE tagged and released 0.1 – Hallprint nylon dart tag for sharks < 150 cm TL 0 – Hallprint stainless steel head dart tags (SSD) for 74-79 1980 1981 82-85 86-89 1990 1991 1992 1993 1995 1996 1997 1998 1999 2000 2001 2002 sharks > 150 cm Year Group • Habitat utilization studies • Migration • All dead sharks or sharks needed for ongoing research projects are fully sampled – Reproductive biology – Age and growth – Diet • Over 1200 sets – Over 120,000 hooks • Nearly 10,000 fishes – 23 species of sharks – 8 species of batoids – Few teleosts Sharks caught 1973 - 2004 Species Number Sandbar shark, Carcharhinus plumbeus Atlantic sharpnose shark, Rhizoprionodon terraenovae Smooth dogfish, Mustelus canis Dusky shark, Carcharhinus obscurus Sandtiger shark, Carcharias taurus Blacktip shark, Carcharhinus limbatus Scalloped hammerhead shark, Sphyrna lewini Tiger shark, Galeocerdo cuvier Spiny dogfish, Squalus acanthias Spinner shark, Carcharhinus brevipinna Bignose shark, Carcharhinus altimus Blue shark, Prionace glauca Shortfin mako shark, Isurus oxyrinchus Silky shark, Carcharhinus falciformis Lemon shark, Negaprion brevirostris Common thresher shark, Alopias vulpinus Bull shark, Carcharhinus leucas Night shark, Carcharhinus signatus Smooth hammerhead shark, Sphyrna zygaena Blacknose shark, Carcharhinus acronotus Bigeye thresher shark, Alopias superciliosus White shark, Carcharodon carcharias TOTAL Scalloped hammerhead Sphyrna lewini • Often targeted for its valuable fins • Highly fecund (12-38 pups), age @ maturity = 15 yr • Aggregations are susceptible to overnight longline sets. Ram ventilators with small mouth, post-release survival very low Endangered Dusky Smoothhound Mustelus canis • Diet consists mostly of crustaceans • Recent unregulated fishery established in MD, VA, and NC • Females mature @ 4-5 yr, produce 10- 20 pups annually Near Threatened Unique management considerations Most sharks have a very conservative or “K-selected” life history, characterized by: •Slow growth •Low fecundity (# offspring) •Late age @ maturity Surplus Production Maximum Sustainable Yield or… “How much can we harvest without crashing the population?” Shark Fecundity Anchovy Growth Age @ maturity Maximum age Surplus Production Maximum Sustainable Yield Proportion needed to sustain population Fecundity Growth Age @ maturity Maximum age Surplus Production Maximum Sustainable Yield Proportion we can harvest without crashing the population Fecundity Growth Age @ maturity Maximum age Case study in shark conservation gone wrong Butterfly rays (2 spp.) Cownose rays (1 sp.) Coastal Rays of Virginia Eagle rays (1 sp.) Stingrays (4 spp.) Cownose ray Abundant throughout Bay Seasonally (Summer/Fall) Forms huge migratory schools Swims at surface Eats mostly shellfish Maximum size 1-m width Slow-growing, long-lived Matures at 8 years, one pup Did NOT wipe out native oysters Smith and Merriner, 1985 In Chesapeake Bay, cownose rays are purportedly hindering oyster recovery efforts Problems with Myers’ hypothesis • Diet studies do not support the notion that these sharks significantly prey on cownose rays Problems with Myers’ hypothesis • Diet studies do not support the notion that these sharks significantly prey on cownose rays • Diet studies do not support the notion that cownose rays significantly prey on oysters Rays consume farmed oysters, not wild oysters Smith and Merriner, 1985 Problems with Myers’ hypothesis • Diet studies do not support the notion that these sharks significantly prey on cownose rays • Diet studies do not support the notion that cownose rays significantly prey on oysters • The life history of the cownose ray precludes an “explosive” population growth N=2 N=1 Unintended consequences of Myers et al. 2007 • Development of an unregulated fishery on a highly K-selected elasmobranch Unintended consequences of Myers et al. 2007 • Development of an unregulated fishery on a highly K-selected elasmobranch • Life history of the cownose ray (like many sharks) makes this species particularly susceptible to overharvest, needs regulation, proceed with caution! • There are other, less detrimental approaches to protecting oyster aquafarms that should be investigated (i.e. barriers, deterrents) Thank You! Photo credits: FishBase www.fishbase.org VIMS Shark Research Program Flickr Jason Romine, Bob Fisher, www.flickr.com Dean Grubbs Feel free to contact with questions: [email protected] .
Recommended publications
  • NOAA Technical Memorandum NMFS-SEFSC-626
    NOAA Technical Memorandum NMFS-SEFSC-626 RELATIVE ABUNDANCE OF SMALLTOOTH SAWFISH (Pristis pectinata) BASED ON THE EVERGLADES NATIONAL PARK CREEL SURVEY BY JOHN K. CARLSON and JASON OSBORNE U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center Panama City Laboratory 3500 Delwood Beach Rd. Panama City, FL 32408 February 2012 NOAA Technical Memorandum NMFS-SEFSC-626 RELATIVE ABUNDANCE OF SMALLTOOTH SAWFISH (Pristis pectinata) BASED ON THE EVERGLADES NATIONAL PARK CREEL SURVEY BY JOHN K. CARLSONa, and JASON OSBORNEb aNational Marine Fisheries Service Southeast Fisheries Science Center 3500 Delwood Beach Road Panama City, FL 32408 bNational Park Service South Florida Natural Resource Center 40001 State Road 9336 Homestead, FL, 33034 U. S. DEPARTMENT OF COMMERCE Rebecca M. Blank, Acting Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Jane Lubchenco, Under Secretary for Oceans and Atmosphere NATIONAL MARINE FISHERIES SERVICE Eric Schwaab, Assistant Administrator for Fisheries February 2012 This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS or to this publication furnished by NMFS in any advertising or sales promotion which would imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
    [Show full text]
  • Bignose Shark, Carcharhinus Altimus
    Published Date: 1 March 2019 Bignose Shark, Carcharhinus altimus Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Least Concern Global Data Deficient Assessment Assessment Pillans, R.D., Amorim, A.F., Mancini, P.L., Gonzalez, M., Anderson, C.V. Assessors & Morgan, D.L. Report Card Remarks Not commercially harvested in Australia Summary The Bignose Shark is a large bodied shark with a likely circumglobal distribution. It inhabits continental shelf edges throughout tropical and temperate marine waters. It is not targeted by fisheries, however it is Source: CSIRO National Fish Collection. Licence: CC By Attribution taken as bycatch in longline, trawl and gillnet fisheries in much of its distribution. It is mistaken for the Sandbar Shark (C. plumbeus) and therefore, little information on population trends have been recorded. Declines in abundance have been reported in the Northwest Atlantic, Maldives and Southeast Asia, causing concern for the status of this species in these regions. In Australia, the Bignose Shark is not commercially targeted and rarely caught. Therefore, globally the Bignose Shark is Data Deficient (IUCN) and within Australia is assessed as Least Concern (IUCN) and Sustainable (SAFS). Distribution The Bignose Shark is circumglobally distributed throughout tropical and temperate waters however, records are discontinuous (Compagno 1984, Anderson and Stevens 1996, Last and Stevens, 2009). It has been recorded throughout the Central Atlantic Ocean (United States, Cuba, Brazil), Mediterranean Sea, the Indian Ocean (South Africa, India, Red Sea, Sri Lanka) and Northwest Pacific Ocean (China, Thailand, Mexico, California, Peru) (Compagno 1984, Anderson and Stevens 1996, Last and Stevens, 2009). Within Australia it is found in from Cape Leeuwin (Western Australia) north and east to northern New South Wales (Last and Stevens 2009).
    [Show full text]
  • Investigating Life History Differences Between Finetooth Sharks, Carcharhinus Isodon, in the Northern Gulf of Mexico and the Western North Atlantic Ocean
    Gulf of Mexico Science, 2006(1/2), pp. 2–10 Investigating Life History Differences Between Finetooth Sharks, Carcharhinus isodon, in the Northern Gulf of Mexico and the Western North Atlantic Ocean J. MARCUS DRYMON,WILLIAM B. DRIGGERS III, DOUGLAS OAKLEY, AND GLENN F. ULRICH The life history of the finetooth shark, Carcharhinus isodon, off South Carolina was studied by determining age, growth, and size and age at maturity. These data were compared to a recent study describing the same parameters for finetooth sharks in the northern Gulf of Mexico. Cervical vertebrae were extracted from 168 specimens (71 males and 97 females), ranging in size from 376 to 1,262 mm fork length (FL), and prepared for age analysis using standard techniques. Sex- specific von Bertalanffy growth models were generated and yielded the following ؍ ((Ϫ Ϫ0.19(t Ϫ (Ϫ2.17 ؍ growth equations: Lt 1,311 mm FL (1 e ) for females and Lt 1,151 mm FL (1 Ϫ eϪ0.33(t Ϫ (Ϫ1.43))) for males. The oldest female and male aged were 12.4 yr and 10.4 yr, respectively. Median length where 50% of the population was mature was 1,021 mm FL for females, corresponding to an age of 6.3 yr and 1,015 mm FL for males, corresponding to an age of 5.0 yr. Finetooth sharks in the western North Atlantic Ocean had higher observed ages and there was a sig- nificant difference in size at age between neonate finetooth sharks in the western North Atlantic Ocean and the northern Gulf of Mexico; however, there were no significant differences among von Bertalanffy growth function parameters be- tween regions examined.
    [Show full text]
  • Seafood Watch Seafood Report
    Seafood Watch Seafood Report Sharks and Dogfish With a focus on: Blacktip shark (Carcharhinus limbatus) Common thresher shark (Alopias vulpinus) Dusky smoothhound/smooth dogfish (Mustelus canis) Sandbar shark (Carcharhinus plumbeus) Shortfin mako shark (Isurus oxyrinchus) Spiny dogfish (Squalus acanthias) © Monterey Bay Aquarium Final Report December 21, 2005 Stock Status Update June 9, 2011 Santi Roberts Fisheries Research Analyst Monterey Bay Aquarium SeafoodWatch® Sharks & DogfishReport June 9, 2010 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives,” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible.
    [Show full text]
  • Silky Shark Updated: December 2016
    Silky shark Updated: December 2016 SILKY SHARK SUPPORTING INFORMATION (Information collated from reports of the Working Party on Ecosystems and Bycatch and other sources as cited) CONSERVATION AND MANAGEMENT MEASURES Silky shark in the Indian Ocean are currently subject to a number of Conservation and Management Measures adopted by the Commission: • Resolution 15/01 on the recording of catch and effort data by fishing vessels in the IOTC area of competence sets out the minimum logbook requirements for purse seine, longline, gillnet, pole and line, handline and trolling fishing vessels over 24 metres length overall and those under 24 metres if they fish outside the EEZs of their flag States within the IOTC area of competence. As per this Resolution, catch of sharks silky sharks must be recorded by longline and purse seine fleets (retained and discarded). • Resolution 15/02 Mandatory statistical reporting requirements for IOTC Contracting Parties and Cooperating Non-Contracting Parties (CPCs) indicated that the provisions, applicable to tuna and tuna-like species, are applicable to shark species. • Resolution 11/04 on a Regional Observer Scheme requires data on shark interactions to be recorded by observers and reported to the IOTC within 150 days. The Regional Observer Scheme (ROS) started on 1st July 2010. • Resolution 05/05 Concerning the conservation of sharks caught in association with fisheries managed by IOTC includes minimum reporting requirements for sharks, calls for full utilisation of sharks and includes a ratio of fin-to-body weight for shark fins retained onboard a vessel. Extracts from Resolutions 15/01,15/02, 11/04 and 05/05 RESOLUTION 15/01 ON THE RECORDING OF CATCH AND EFFORT DATA BY FISHING VESSELS IN THE IOTC AREA OF COMPETENCE Para.
    [Show full text]
  • Use of Productivity and Susceptibility Indices to Determine the Vulnerability of a Stock: with Example Applications to Six U.S
    Use of productivity and susceptibility indices to determine the vulnerability of a stock: with example applications to six U.S. fisheries. Wesley S. Patrick1, Paul Spencer2, Olav Ormseth2, Jason Cope3, John Field4, Donald Kobayashi5, Todd Gedamke6, Enric Cortés7, Keith Bigelow5, William Overholtz8, Jason Link8, and Peter Lawson9. 1NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East- West Highway, Silver Spring, MD 20910; 2 NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way, Seattle, WA 98115; 3NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112; 4NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060; 5NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822; 6NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149; 7NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408; 8NOAA, National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 9NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2030 South Marine Science Drive, Newport, OR 97365. CORRESPONDING AUTHOR: Wesley S. Patrick, NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East-West
    [Show full text]
  • Field Guide to Requiem Sharks (Elasmobranchiomorphi: Carcharhinidae) of the Western North Atlantic
    Field guide to requiem sharks (Elasmobranchiomorphi: Carcharhinidae) of the Western North Atlantic Item Type monograph Authors Grace, Mark Publisher NOAA/National Marine Fisheries Service Download date 24/09/2021 04:22:14 Link to Item http://hdl.handle.net/1834/20307 NOAA Technical Report NMFS 153 U.S. Department A Scientific Paper of the FISHERY BULLETIN of Commerce August 2001 (revised November 2001) Field Guide to Requiem Sharks (Elasmobranchiomorphi: Carcharhinidae) of the Western North Atlantic Mark Grace NOAA Technical Report NMFS 153 A Scientific Paper of the Fishery Bulletin Field Guide to Requiem Sharks (Elasmobranchiomorphi: Carcharhinidae) of the Western North Atlantic Mark Grace August 2001 (revised November 2001) U.S. Department of Commerce Seattle, Washington Suggested reference Grace, Mark A. 2001. Field guide to requiem sharks (Elasmobranchiomorphi: Carcharhinidae) of the Western North Atlantic. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 153, 32 p. Online dissemination This report is posted online in PDF format at http://spo.nwr.noaa.gov (click on Technical Reports link). Note on revision This report was revised and reprinted in November 2001 to correct several errors. Previous copies of the report, dated August 2001, should be destroyed as this revision replaces the earlier version. Purchasing additional copies Additional copies of this report are available for purchase in paper copy or microfiche from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; 1-800-553-NTIS; http://www.ntis.gov. Copyright law Although the contents of the Technical Reports have not been copyrighted and may be reprinted entirely, reference to source is appreciated.
    [Show full text]
  • Sharks and Rays
    SHARKS AND RAYS Photo by: © Jim Abernethy Transboundary Species - Content ... 31 32 33 34 35 ... Overview As stated in the previous section, the establishment of the Yarari fishing for sharks in the Netherlands and places new pressure on Marine Mammal and Shark Sanctuary was an important step fishermen to implement new techniques and updated fishing gear in protecting the shark and ray species of the Dutch Caribbean. to avoid accidentally catching sharks and rays as bycatch. Overall, there is a significant lack of information concerning these vital species within Dutch Caribbean waters. Fortunately, this There are several different international treaties and legisla- trend is changing and in the last few years there has been a push tion which offer protection to these species. This includes the to increase research, filling in the historic knowledge gap. Sharks Convention on International Trade in Endangered Species (CITES), and rays are difficult species to protect as they tend to have long the Specially Protected Areas and Wildlife (SPAW) protocol and reproduction cycles, varying between 3 and 30 years, small litters, the Convention on Migratory Species (CMS). Scientists are just which means they do not recover quickly when overfished and can beginning to uncover the complexities of managing conservation travel over great distances which makes them difficult to track. efforts for these species, as they often have long migration routes which put them in danger if international waters are not managed Early in 2019, the Ministry of Agriculture, Nature and Food Quality and protected equally. (LNV) published a strategy document to manage and protect sharks and rays within waters the Netherlands influences (this There are more than thirty different species of sharks and includes the North Sea, Dutch Caribbean and other international rays which are known to inhabit the waters around the Dutch waters).
    [Show full text]
  • SEDAR 11 Stock Assessment Report Large Coastal Shark Complex
    SEDAR 11 Stock Assessment Report Large Coastal Shark Complex, Blacktip and Sandbar Shark 2006 NOAA/NMFS Highly Migratory Species Management Division 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-2347 SEDAR 11 LCS Introduction Table of Contents Section I. Introduction Section II. Data Workshop Report Section III. Assessment Workshop Report Section IV. Review Workshop Consensus Summary SEDAR 11 LCS Introduction SEDAR 11 Stock Assessment Report Large Coastal Shark Complex, Blacktip and Sandbar Shark Section I: Introduction SEDAR 11 LCS Introduction 1. SEDAR Overview SEDAR (Southeast Data, Assessment and Review) was initially developed by the Southeast Fisheries Science Center of the National Marine Fisheries Service (NMFS) and the South Atlantic Fishery Management Council to improve the quality and reliability of stock assessments and to ensure a robust and independent peer review of stock assessment products. SEDAR was expanded in 2003 to address the assessment needs of all three Fishery Management Councils in the Southeast Region (South Atlantic, Gulf of Mexico, and Caribbean) and to provide a platform for reviewing assessments developed through the Atlantic and Gulf States Marine Fisheries Commissions and state agencies within the southeast. In 2005, the SEDAR process was adapted by the NOAA/NMFS Highly Migratory Species Management Division as a means to conduct stock assessments for the large coastal shark and small coastal shark complexes under their jurisdiction. SEDAR strives to improve the quality of assessment advice provided for managing fisheries resources in the Southeast US by increasing and expanding participation in the assessment process, ensuring the assessment process is transparent and open, and providing a robust and independent review of assessment products.
    [Show full text]
  • 2021 Louisiana Recreational Fishing Regulations
    2021 LOUISIANA RECREATIONAL FISHING REGULATIONS www.wlf.louisiana.gov 1 Get a GEICO quote for your boat and, in just 15 minutes, you’ll know how much you could be saving. If you like what you hear, you can buy your policy right on the spot. Then let us do the rest while you enjoy your free time with peace of mind. geico.com/boat | 1-800-865-4846 Some discounts, coverages, payment plans, and features are not available in all states, in all GEICO companies, or in all situations. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. In the state of CA, program provided through Boat Association Insurance Services, license #0H87086. GEICO is a registered service mark of Government Employees Insurance Company, Washington, DC 20076; a Berkshire Hathaway Inc. subsidiary. © 2020 GEICO CONTENTS 6. LICENSING 9. DEFINITIONS DON’T 11. GENERAL FISHING INFORMATION General Regulations.............................................11 Saltwater/Freshwater Line...................................12 LITTER 13. FRESHWATER FISHING SPORTSMEN ARE REMINDED TO: General Information.............................................13 • Clean out truck beds and refrain from throwing Freshwater State Creel & Size Limits....................16 cigarette butts or other trash out of the car or watercraft. 18. SALTWATER FISHING • Carry a trash bag in your car or boat. General Information.............................................18 • Securely cover trash containers to prevent Saltwater State Creel & Size Limits.......................21 animals from spreading litter. 26. OTHER RECREATIONAL ACTIVITIES Call the state’s “Litterbug Hotline” to report any Recreational Shrimping........................................26 potential littering violations including dumpsites Recreational Oystering.........................................27 and littering in public. Those convicted of littering Recreational Crabbing..........................................28 Recreational Crawfishing......................................29 face hefty fines and litter abatement work.
    [Show full text]
  • Spinner Shark, Carcharhinus Brevipinna
    Published Date: 1 March 2019 Spinner Shark, Carcharhinus brevipinna Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Least Concern Global Near Threatened Assessment Assessment Assessors Burgess, G.H. & Smart, J.J. Report Card Remarks In Australia, fishing pressure is currently well managed Summary The Spinner Shark is a common, coastal pelagic shark found in warm- temperate and tropical waters across the globe. It frequents nearshore waters and is often captured in commercial and recreational fisheries. It is sensitive to fishing pressure and habitat degradation of coastal nursery Source: CSIRO national Fish Collection. License: CC By Attribution. habitats. Little information is known on the status of Spinner Sharks throughout its distribution. Within Australia, fishing pressure is currently well managed. The Spinner Shark is assessed globally as Near Threatened (IUCN) and in Australia as Least Concern (IUCN), while Australian stocks are classified as Sustainable (SAFS). Distribution Within Australia, the Spinner Shark is found across northern Australia, from Walpole (Western Australia), throughout the Northern Territory, Queensland and to southern New South Wales (Last and Stevens 2009). It is distributed throughout the world, including the east coast of the United States, Brazil, Mediterranean Sea, west coast of Central Africa, South Africa, Madagascar and throughout the Indo-Pacific. A recent genetic study detected evidence suggesting there may be multiple, genetically- distinct stocks throughout its Australian range (Geraghty et al. 2013). Stock structure and status There is currently very little information on population size and stock status for the Spinner Shark in Australian waters. A suite of management measures introduced from 2009 have led to a substantial reduction in fishing effort targeting adults in New South Wales waters.
    [Show full text]
  • Mercury in Sharks of Belize, 2008
    Elevated mercury levels in sharks of Belize David C. Evers 1, Rachel T. Graham 2, Neil Hammerschlag 3, Christopher Perkins 4, Robert Michener 5, and Tim Divoll 1 BioDiversity Research Institute 1, Wildlife Conservation Society 2, University of Miami 3, University of Connecticut 4, and Boston University 5. Abstract: Mercury (Hg) loading in global aquatic ecosystems is a growing concern. 1. Mercury exposure profile by shark species - Highest Hg levels were recorded in the bull, blacktip, great Study Area : A total of 14 distinct locations were sampled in the Gulf of Honduras along Compelling evidence of widespread adverse effects in fish and wildlife populations indicates hammerhead, scalloped hammerhead, and nurse sharks. Lowest Hg levels were recorded in the bonnethead, the coast of southern Belize (red circle). Comparison shark muscle Hg concentrations sharpnose, lemon and sandbar sharks. the rate of transformation to methylmercury is problematic. Long-lived, apex predators such from the U.S. are from southern Florida (white circle). 2.5 as sharks are at high risk to Hg toxicity. We investigated the occurrence of Hg in sharks from USEPA Advisory = 0.3 ug/g, ww coastal waters of southern Belize. In our pilot study, 101 sharks representing 9 species were FDA & WHO Advisory = 1.0 ug/g, ww 2.0 analyzed for muscle Hg levels. Highest Hg levels were recorded in bull, blacktip, hammerhead, and nurse sharks. Lowest Hg levels were recorded in bonnethead, sharpnose, 1.5 and lemon sharks. Over 88% of the sharks sampled exceeded USEPA human health 1.0 consumption standards. Muscle Hg strongly correlated with size for blacktip and nurse sharks.
    [Show full text]