The Electrostatic Potential Is the Coulomb Integral Transform of the Electric Charge Density

Total Page:16

File Type:pdf, Size:1020Kb

The Electrostatic Potential Is the Coulomb Integral Transform of the Electric Charge Density ENSENANZA˜ REVISTA MEXICANA DE FISICA´ E 54 (2) 153–159 DICIEMBRE 2008 Mathematics motivated by physics: the electrostatic potential is the Coulomb integral transform of the electric charge density L. Medinaa and E. Ley Koo a;b aFacultad de Ciencias, Universidad Nacional Autonoma´ de Mexico,´ Ciudad Universitaria, Mexico´ D.F., 04510, Mexico,´ e-mail: [email protected], bInstituto de F´ısica, Universidad Nacional Autonoma´ de Mexico,´ Apartado Postal 20-364, 01000 Mexico D.F., Mexico, e-mail: eleykoo@fisica.unam.mx Recibido el 19 de octubre de 2007; aceptado el 11 de marzo de 2007 This article illustrates a practical way to connect and coordinate the teaching and learning of physics and mathematics. The starting point is the electrostatic potential, which is obtained in any introductory course of electromagnetism from the Coulomb potential and the superposition principle for any charge distribution. The necessity to develop solutions to the Laplace and Poisson differential equations is also recognized, identifying the Coulomb potential as the generating function of harmonic functions. Correspondingly, the convenience of expressing the electrostatic potential in terms of its multipole expansion in spherical coordinates, or as integral transforms based on harmonic functions in different coordinate systems, is also established. These connections provide a motivation for teachers and students to acquire the necessary mathematics as a basic tool in the study of electromagnetic theory, optics and quantum mechanics. Keywords: Electrostatics; Laplace and Poisson equations; spherical and circular cylindrical Harmonic functions. Este art´ıculo ilustra una manera practica´ de conectar y coordinar la ensenanza˜ y aprendizaje de la f´ısica y las matematicas.´ El punto de partida es el potencial electrostatico´ que se obtiene en el curso introductorio de electromagnetismo a partir del potencial de Coulomb y del principio de superposicion´ para cualquier distribucion´ de carga. Tambien´ se reconoce la necesidad de construir soluciones de las ecuaciones diferenciales de Laplace y de Poisson, identificando al potencial de Coulomb como una funcion´ generadora de funciones armonicas.´ Cor- respondientemente, tambien´ se reconoce la conveniencia de expresar al potencial electrostatico´ en terminos´ de su desarrollo multipolar en coordenadas esfericas,´ o de transformadas integrales basadas en funciones armonicas´ en diferentes sistemas de coordenadas. Estas conex- iones proporcionan una motivacion´ para maestros y alumnos para adquirir las matematicas´ necesarias como una herramienta basica´ en el estudio de la teor´ıa electromagnetica,´ la optica´ y mecanica´ cuantica.´ Descriptores: Electrostatica;´ ecuaciones diferenciales de Laplace y de Poisson; funciones armonicas´ esfericas´ y cil´ındricas circulares. PACS: 41.20.Cv1 1. Introduction This article addresses the general problem of connecting and coordinating the study of physics and mathematics in dif- ferent areas and on different levels. Specific facets of the Mathematics and physics have always been closely inter- problem have been explored in [5] and in a series of dialogues woven in a two-way process. The former is not only the under the title of ”Mathematics motivated by physics” [6]. language of the latter; in addition, it often determines to a Emphasis was placed on the construction of mathematical large extent the content and meaning of physical concepts bridges to make the transition from introductory courses and theories themselves. Consequently, progress in the study in mechanics, fluids, thermodynamics, electromagnetism of fundamental physics increasingly depends on the avail- and quantum mechanics to their junior/senior/graduate level ability of new mathematical tools. It is a well-known fact counterparts. The second half of the title of this manuscript that there has been a close interrelationship between mathe- blends the physical and mathematical elements to guide col- matics and physics throughout their historical development. leagues and students in their respective tasks of teaching and Modern mathematics and physics were born in the 17th cen- learning electrostatics, identifying and constructing the ap- tury through Newton’s formulation of the laws of mechanics propriate mathematical tools. and the invention of the infinitesimal calculus [1-2]. New- ton changed the face of scientific research by placing the full The starting points are the physical laws of electrostatics force of mathematics at the service of physical enquiry, be- expressed in their integral and differential equation forms, re- coming a unique example of coordination in invention and viewed in Sec. 2. Section 3 is devoted to the solutions to discovery by a single individual. In contrast, Einstein had the Laplace equation in some illustrative coordinate systems, to learn Riemannian geometry in order to formulate the the- corresponding to the so-called harmonic function bases. In ory of general relativity [3], while Born recognized the ma- Sec. 4, the harmonic function expansions of the Coulomb trix mathematics behind Heisenberg’s formulation of quan- potential in spherical and circular cylindrical coordinates are tum mechanics [4]. comparatively analyzed, contrasting their discrete and con- 154 L. MEDINA AND E. LEY KOO tinuous natures, respectively. The physical and mathemat- The Coulomb force of Eq. (1) is conservative and can ical elements identified in Secs. 3 and 4 are the basis for be written as the negative of the gradient of the so-called representing the electrostatic potential as harmonic function Coulomb potential energy, expansions in Sec. 5, characterizing them according to the µ ¶ specific coordinates involved. Section 6 contains discussions ¡! 1 F 1!2 = ¡ 5 ke q1 q2 ¡! ¡! = ¡ 5 (U12) (7) of the extensions to other coordinates, and to other areas of jr1 ¡ r2 j electromagnetism. Correspondingly, the electric intensity field of Eq. (4) can be written as 2. The laws of electrostatics 0 1 Z ¡! ¡! ½(r0 ) Coulomb’s law describes the radial and inverse-square of the @ ¯ ¯ 0A ¡! E = ¡ke 5 ¯ ¡!¯dV = ¡ 5 Á( r ) (8) ¯¡!r ¡ r0 ¯ distance force between two electrically charged point parti- V cles [7-12]: ¡! ¡! where ¡! (r1 ¡ r2 ) F 1!2 = ke q1 q2 (1) Z ¡! j¡!r ¡ ¡!r j3 ½(r0 ) 1 2 ¡! ¯ ¯ 0 Á( r ) = ke ¯ ¡!¯dV (9) The superposition principle applies in electrostatics, and ¯¡!r ¡ r0 ¯ V states that the force of a collection of charges on a test charge is the vector sum of Coulomb forces: is the electrostatic potential produced by the charge distribu- tion f½,Vg. This is the quantity giving rise to the second half ¡! XN ¡! F ¡! ¡! ¡! ¡! = Fi ¡! ¡! ¡! ¡! of the title in this manuscript. The reader can appreciate the f q i;ri g!( q ; r ) f q i;ri g!( q ; r ) i=1 physical and mathematical elements in it. In Sec. 5, sev- eral alternative mathematical representations are introduced XN (¡!r ¡ ¡!r ) = k q q i (2) explicitly. e i ¡! ¡! 3 i=1 j r ¡ ri j If the line integral of electric intensity field is evaluated using Eq. (8), In the case in which the collection of charges is contin- uously distributed in a volume V, so that the charge element Zr Zr 0 ¡!0 3 0 ¡! ¡! ¡! ¡! ¡! associated with a differential volume is dq = ½(r )d V , E ¢ d r = ¡ 5Á ¢ d r = ¡Á( r ) + Á( r i) (10) ¡!0 where ½(r ) is the charge volume density, the sum in Eq. (2) ri ri becomes an integral: the result depends only on the initial and final points of the in- ³ ¡!´ Z ¡!r ¡ r0 tegration path, and is independent of the path chosen. When ¡! ¡!0 0 ¡! the path is closed, and therefore both points coincide, the F f½;V g!(q; r ) = keq ½(r ) ¯ ¯3 dV (3) ¯¡! ¡!0 ¯ V ¯ r ¡ r ¯ closed-line integral vanishes. Also, the curl of Eq. (8) van- ishes: Since the forces in Eqs. (2) and (3), are proportional to ¡! the magnitude of the charge q, it is possible to identify 5 £ E (¡!r ) = 0 (11) ³ ¡!´ ¡! Z ¡! 0 ¡! F ¡! r ¡ r Equations (7)-(11) are different forms of expressing the E (¡!r ) = = k ½(r0 ) dV 0 (4) e ¯ ¡!¯3 conservative character of the electrostatic field. While Eq. (4) q ¯¡! 0 ¯ ¡! V ¯ r ¡ r ¯ indicates that E (¡!r ) is the force per unit charge at a given po- sition, Eqs. (7) and (8) point out that Á(¡!r ) is the potential as the electric intensity field produced by the charge distribu- energy per unit charge. tion f½; V g. The reader may also inquire about the equation that Á(¡!r ) Gauss’ law of electrostatics follows from the evaluation must satisfy. The answer follows from the substitution of of the flux integral of Eq. (4), becoming I Z Eq. (8) into Eq. (6) with the result: ¡! ¡! ¡! 0 0 E ¢ d a = 4¼ke ½(r )dV = 4¼keQ (5) 2 ¡! ¡! S 5 Á( r ) = ¡4¼ke½( r ); (12) V where S is the closed surface bounding the volume V, and Q the so-called Poisson equation, involving the Lapacian or 2 is the electric charge contained inside that volume. The dif- Laplace operator 5 . ferential equation form of Gauss’ law is obtained by applying At the points where there is no charge, Eq. (12) reduces Gauss’ flux or divergence theorem to Eq. (5): to the so-called Laplace equation, ¡! ¡! ¡! 2 ¡! 5 ¢ E ( r ) = 4¼ke½( r ) (6) 5 Á( r ) = 0 (13) Rev. Mex. F´ıs. E 54 (2) (2008) 153–159 MATHEMATICS MOTIVATED BY PHYSICS: THE ELECTROSTATIC POTENTIAL IS THE COULOMB INTEGRAL. 155 3. Harmonic functions in spherical and circu- is the well-known Fourier basis. The real and imaginary parts lar cylindrical coordinates cos (m') and sin (m') correspond to the alternative even and odd (under ' !¡') Fourier bases. The orthonormality The solutions to the Laplace equation are called harmonic and completeness properties of the basis are expressed, by functions. Here we review the explicit forms of the equa- Z2¼ 0 tion in spherical and circular cylindrical coordinates, illus- e(in ')e(in') d' = ± 0 (24) trating their separation and integration leading to the respec- 2¼ n ;n tive spherical harmonics and circular cylindrical harmon- 0 0 ics [13,14].
Recommended publications
  • Lecture 11 Line Integrals of Vector-Valued Functions (Cont'd)
    Lecture 11 Line integrals of vector-valued functions (cont’d) In the previous lecture, we considered the following physical situation: A force, F(x), which is not necessarily constant in space, is acting on a mass m, as the mass moves along a curve C from point P to point Q as shown in the diagram below. z Q P m F(x(t)) x(t) C y x The goal is to compute the total amount of work W done by the force. Clearly the constant force/straight line displacement formula, W = F · d , (1) where F is force and d is the displacement vector, does not apply here. But the fundamental idea, in the “Spirit of Calculus,” is to break up the motion into tiny pieces over which we can use Eq. (1 as an approximation over small pieces of the curve. We then “sum up,” i.e., integrate, over all contributions to obtain W . The total work is the line integral of the vector field F over the curve C: W = F · dx . (2) ZC Here, we summarize the main steps involved in the computation of this line integral: 1. Step 1: Parametrize the curve C We assume that the curve C can be parametrized, i.e., x(t)= g(t) = (x(t),y(t), z(t)), t ∈ [a, b], (3) so that g(a) is point P and g(b) is point Q. From this parametrization we can compute the velocity vector, ′ ′ ′ ′ v(t)= g (t) = (x (t),y (t), z (t)) . (4) 1 2. Step 2: Compute field vector F(g(t)) over curve C F(g(t)) = F(x(t),y(t), z(t)) (5) = (F1(x(t),y(t), z(t), F2(x(t),y(t), z(t), F3(x(t),y(t), z(t))) , t ∈ [a, b] .
    [Show full text]
  • Arxiv:1507.07356V2 [Math.AP]
    TEN EQUIVALENT DEFINITIONS OF THE FRACTIONAL LAPLACE OPERATOR MATEUSZ KWAŚNICKI Abstract. This article discusses several definitions of the fractional Laplace operator ( ∆)α/2 (α (0, 2)) in Rd (d 1), also known as the Riesz fractional derivative − ∈ ≥ operator, as an operator on Lebesgue spaces L p (p [1, )), on the space C0 of ∈ ∞ continuous functions vanishing at infinity and on the space Cbu of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner’s subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain. 1. Introduction We consider the fractional Laplace operator L = ( ∆)α/2 in Rd, with α (0, 2) and d 1, 2, ... Numerous definitions of L can be found− in− literature: as a Fourier∈ multiplier with∈{ symbol} ξ α, as a fractional power in the sense of Bochner or Balakrishnan, as the inverse of the−| Riesz| potential operator, as a singular integral operator, as an operator associated to an appropriate Dirichlet form, as an infinitesimal generator of an appropriate semigroup of contractions, or as the Dirichlet-to-Neumann operator for an appropriate harmonic extension problem. Equivalence of these definitions for sufficiently smooth functions is well-known and easy. The purpose of this article is to prove that, whenever meaningful, all these definitions are equivalent in the Lebesgue space L p for p [1, ), ∈ ∞ in the space C0 of continuous functions vanishing at infinity, and in the space Cbu of bounded uniformly continuous functions.
    [Show full text]
  • Some Schemata for Applications of the Integral Transforms of Mathematical Physics
    mathematics Review Some Schemata for Applications of the Integral Transforms of Mathematical Physics Yuri Luchko Department of Mathematics, Physics, and Chemistry, Beuth University of Applied Sciences Berlin, Luxemburger Str. 10, 13353 Berlin, Germany; [email protected] Received: 18 January 2019; Accepted: 5 March 2019; Published: 12 March 2019 Abstract: In this survey article, some schemata for applications of the integral transforms of mathematical physics are presented. First, integral transforms of mathematical physics are defined by using the notions of the inverse transforms and generating operators. The convolutions and generating operators of the integral transforms of mathematical physics are closely connected with the integral, differential, and integro-differential equations that can be solved by means of the corresponding integral transforms. Another important technique for applications of the integral transforms is the Mikusinski-type operational calculi that are also discussed in the article. The general schemata for applications of the integral transforms of mathematical physics are illustrated on an example of the Laplace integral transform. Finally, the Mellin integral transform and its basic properties and applications are briefly discussed. Keywords: integral transforms; Laplace integral transform; transmutation operator; generating operator; integral equations; differential equations; operational calculus of Mikusinski type; Mellin integral transform MSC: 45-02; 33C60; 44A10; 44A15; 44A20; 44A45; 45A05; 45E10; 45J05 1. Introduction In this survey article, we discuss some schemata for applications of the integral transforms of mathematical physics to differential, integral, and integro-differential equations, and in the theory of special functions. The literature devoted to this subject is huge and includes many books and reams of papers.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Curl, Divergence and Laplacian
    Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1.
    [Show full text]
  • How to Compute Line Integrals Scalar Line Integral Vector Line Integral
    How to Compute Line Integrals Northwestern, Spring 2013 Computing line integrals can be a tricky business. First, there's two types of line integrals: scalar line integrals and vector line integrals. Although these are related, we compute them in different ways. Also, there's two theorems flying around, Green's Theorem and the Fundamental Theorem of Line Integrals (as I've called it), which give various other ways of computing line integrals. Knowing what to use when and where and why can be confusing, so hopefully this will help to keep things straight. I won't say much about what line integrals mean geometrically or otherwise. Hopefully this is something you have some idea about from class or the book, but I'm always happy to talk about this more in office hours. Here the focus is on computation. Key Point: When you are trying to apply one of these techniques, make sure the technique you are using is actually applicable! (This was a major source of confusion on Quiz 5.) Scalar Line Integral • Arises when integrating a function f over a curve C. • Notationally, is always denoted by something like Z f ds; C where the s in ds is just a normal s, as opposed to ds or d~s. • To compute, find parametric equations x(t); a ≤ t ≤ b for C and use Z Z b f ds = f(x(t)) kx0(t)k dt: C a • In the special case where f is the constant function 1, Z ds = arclength of C: C • For scalar line integrals, the orientation (i.e.
    [Show full text]
  • Methods of Integral Transforms - V
    COMPUTATIONAL METHODS AND ALGORITHMS – Vol. I - Methods of Integral Transforms - V. I. Agoshkov, P. B. Dubovski METHODS OF INTEGRAL TRANSFORMS V. I. Agoshkov and P. B. Dubovski Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia Keywords: Integral transform, Fourier transform, Laplace transform, Mellin transform, Hankel transform, Meyer transform, Kontorovich-Lebedev transform, Mehler-Foque transform, Hilbert transform, Laguerre transform, Legendre transform, convolution transform, Bochner transform, chain transform, wavelet, wavelet transform, problems of the oscillation theory, heat conductivity problems, problems of the theory of neutron slowing-down, problems of hydrodynamics, problems of the elasticity theory, Boussinesq problem, coagulation equation, physical kinetics. Contents 1. Introduction 2. Basic integral transforms 2.1. The Fourier Transform 2.1.1. Basic Properties of the Fourier Transform 2.1.2. The Multiple Fourier Transforms 2.2. The Laplace Transform 2.2.1. The Laplace Integral 2.2.2. The Inversion Formula for the Laplace Transform 2.2.3. Limit Theorems 2.3. The Mellin Transform 2.4. The Hankel Transform 2.5. The Meyer Transform 2.6. The Kontorovich-Lebedev Transform 2.7. The Mehler-Foque Transform 2.8. The Hilbert Transform 2.9. The Laguerre and Legendre Transforms 2.10. The Bochner Transform, the Convolution Transform, the Wavelet and Chain Transforms 3. The application of integral transforms to problems of the oscillation theory 3.1. Electric Oscillations 3.2. TransverseUNESCO Oscillations of a String – EOLSS 3.3. Transverse Oscillations of an Infinite Round Membrane 4. The application of integral transforms to heat conductivity problems 4.1. The SolutionSAMPLE of the Heat Conductivity CHAPTERS Problem by the use of the Laplace Transform 4.2.
    [Show full text]
  • Line Integrals
    Line Integrals Kenneth H. Carpenter Department of Electrical and Computer Engineering Kansas State University September 12, 2008 Line integrals arise often in calculations in electromagnetics. The evaluation of such integrals can be done without error if certain simple rules are followed. This rules will be illustrated in the following. 1 Definitions 1.1 Definite integrals In calculus, for functions of one dimension, the definite integral is defined as the limit of a sum (the “Riemann” integral – other kinds are possible – see an advanced calculus text if you are curious about this :). Z b X f(x)dx = lim f(ξi)∆xi (1) ∆xi!0 a i where the ξi is a value of x within the incremental ∆xi, and all the incremental ∆xi add up to the length along the x axis from a to b. This is often pictured graphically as the area between the curve drawn as f(x) and the x axis. 1 EECE557 Line integrals – supplement to text - Fall 2008 2 1.2 Evaluation of definite integrals in terms of indefinite inte- grals The fundamental theorem of integral calculus relates the indefinite integral to the definite integral (with certain restrictions as to when these exist) as Z b dF f(x)dx = F (b) − F (a); when = f(x): (2) a dx The proof of eq.(2) does not depend on having a < b. In fact, R b f(x)dx = R a a − b f(x)dx follows from the values of ∆xi being signed so that ∆xi equals the value of x on the side of the increment next to b minus the value of x on the side of the increment next to a.
    [Show full text]
  • Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra
    entropy Article Partial Derivative Approach to the Integral Transform for the Function Space in the Banach Algebra Kim Young Sik Department of Mathematics, Hanyang University, Seoul 04763, Korea; [email protected] Received: 27 July 2020; Accepted: 8 September 2020; Published: 18 September 2020 Abstract: We investigate some relationships among the integral transform, the function space integral and the first variation of the partial derivative approach in the Banach algebra defined on the function space. We prove that the function space integral and the integral transform of the partial derivative in some Banach algebra can be expanded as the limit of a sequence of function space integrals. Keywords: function space; integral transform MSC: 28 C 20 1. Introduction The first variation defined by the partial derivative approach was defined in [1]. Relationships among the Function space integral and transformations and translations were developed in [2–4]. Integral transforms for the function space were expanded upon in [5–9]. A change of scale formula and a scale factor for the Wiener integral were expanded in [10–12] and in [13] and in [14]. Relationships among the function space integral and the integral transform and the first variation were expanded in [13,15,16] and in [17,18] In this paper, we expand those relationships among the function space integral, the integral transform and the first variation into the Banach algebra [19]. 2. Preliminaries Let C0[0, T] be the class of real-valued continuous functions x on [0, T] with x(0) = 0, which is a function space. Let M denote the class of all Wiener measurable subsets of C0[0, T] and let m denote the Wiener measure.
    [Show full text]
  • Stokes' Theorem
    V13.3 Stokes’ Theorem 3. Proof of Stokes’ Theorem. We will prove Stokes’ theorem for a vector field of the form P (x, y, z) k . That is, we will show, with the usual notations, (3) P (x, y, z) dz = curl (P k ) · n dS . � C � �S We assume S is given as the graph of z = f(x, y) over a region R of the xy-plane; we let C be the boundary of S, and C ′ the boundary of R. We take n on S to be pointing generally upwards, so that |n · k | = n · k . To prove (3), we turn the left side into a line integral around C ′, and the right side into a double integral over R, both in the xy-plane. Then we show that these two integrals are equal by Green’s theorem. To calculate the line integrals around C and C ′, we parametrize these curves. Let ′ C : x = x(t), y = y(t), t0 ≤ t ≤ t1 be a parametrization of the curve C ′ in the xy-plane; then C : x = x(t), y = y(t), z = f(x(t), y(t)), t0 ≤ t ≤ t1 gives a corresponding parametrization of the space curve C lying over it, since C lies on the surface z = f(x, y). Attacking the line integral first, we claim that (4) P (x, y, z) dz = P (x, y, f(x, y))(fxdx + fydy) . � C � C′ This looks reasonable purely formally, since we get the right side by substituting into the left side the expressions for z and dz in terms of x and y: z = f(x, y), dz = fxdx + fydy.
    [Show full text]
  • Basic Magnetic Resonance Imaging
    Basic Magnetic Resonance Imaging Mike Tyszka, Ph.D. Magnetic Resonance Theory Course 2004 Caltech Brain Imaging Center California Institute of Technology Spatial Encoding Spatial Localization of Signal Va r y B sp a t i a l l y ω=γB Linear Field Gradients Linear Magnetic Field Gradients One-Dimensional Tw o -Dimensional Gradient direction Bz(x,z) Bz z Distance (x) x Deviation from B0 typically very small (~0.1%) Frequency Encoding Total signal from spins in plane perpendicular to gradient direction Signal Gradient direction Frequency (ω) Distance (ω/γG) The FID in a Field Gradient • FID contains total signal from all spins at all frequencies/locations. • Each frequency component represents the total signal from a plane perpendicular to the gradient direction. • Frequency analysis of FID reveals “projection” of object. MRI from Projections • Can projections be turned into an image? Back Projection • Sweep gradient direction through 180° • Acquire projections of object for each direction Sinogram Back Projection or Inverse Radon Transform Frequency Analysis for MRI MR Signal as a Complex Quantity • Both the magnitude and phase of the MR signal are measured. y’ • Two signal channels are commonly referred to as “real” and “imaginary”. A M φ y x’ Mx The Fourier Transform (FT) The Fourier Transform is an Integral Transform which, for MRI, relates a time varying waveform to the corresponding frequency spectrum. FORWARD TRANSFORM (time -> frequency) REVERSE TRANSFORM (frequency -> time) The Fast Fourier Transform (FFT) • Numerical algorithm for efficient computation of the discrete Fourier Transform. • Requires discrete complex valued samples. • Both forward and reverse transforms can be calculated.
    [Show full text]