Constraining the Hubble Parameter Using Distance Modulus – Redshift Relation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hubble Constant H0 --- Describing How Fast the Universe Is Expanding A˙ (T) H(T) = , A(T) = the Cosmic Scale Factor A(T)
Determining H0 and q0 from Supernova Data LA-UR-11-03930 Mian Wang Henan Normal University, P.R. China Baolian Cheng Los Alamos National Laboratory PANIC11, 25 July, 2011,MIT, Cambridge, MA Abstract Since 1929 when Edwin Hubble showed that the Universe is expanding, extensive observations of redshifts and relative distances of galaxies have established the form of expansion law. Mapping the kinematics of the expanding universe requires sets of measurements of the relative size and age of the universe at different epochs of its history. There has been decades effort to get precise measurements of two parameters that provide a crucial test for cosmology models. The two key parameters are the rate of expansion, i.e., the Hubble constant (H0) and the deceleration in expansion (q0). These two parameters have been studied from the exceedingly distant clusters where redshift is large. It is indicated that the universe is made up by roughly 73% of dark energy, 23% of dark matter, and 4% of normal luminous matter; and the universe is currently accelerating. Recently, however, the unexpected faintness of the Type Ia supernovae (SNe) at low redshifts (z<1) provides unique information to the study of the expansion behavior of the universe and the determination of the Hubble constant. In this work, We present a method based upon the distance modulus redshift relation and use the recent supernova Ia data to determine the parameters H0 and q0 simultaneously. Preliminary results will be presented and some intriguing questions to current theories are also raised. Outline 1. Introduction 2. Model and data analysis 3. -
Inflationary Cosmology: from Theory to Observations
Inflationary Cosmology: From Theory to Observations J. Alberto V´azquez1, 2, Luis, E. Padilla2, and Tonatiuh Matos2 1Instituto de Ciencias F´ısicas,Universidad Nacional Aut´onomade Mexico, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, M´exico. 2Departamento de F´ısica,Centro de Investigaci´ony de Estudios Avanzados del IPN, M´exico. February 10, 2020 Abstract The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cosmological observations. The inflationary model solves many of the fundamental problems that challenge the Standard Big Bang cosmology, such as the Flatness, Horizon, and the magnetic Monopole problems. Additionally, it provides an explanation for the initial conditions observed throughout the Large-Scale Structure of the Universe, such as galaxies. In this review, we describe general solutions to the problems in the Big Bang cosmology carry out by a single scalar field. Then, with the use of current surveys, we show the constraints imposed on the inflationary parameters (ns; r), which allow us to make the connection between theoretical and observational cosmology. In this way, with the latest results, it is possible to select, or at least to constrain, the right inflationary model, parameterized by a single scalar field potential V (φ). Abstract El objetivo principal de este art´ıculoes ofrecer una introducci´oncualitativa a la teor´ıade la inflaci´onc´osmica y su relaci´oncon observaciones actuales. El modelo inflacionario resuelve algunos problemas fundamentales que desaf´ıanal modelo est´andarcosmol´ogico,denominado modelo del Big Bang caliente, como el problema de la Planicidad, el Horizonte y la inexistencia de Monopolos magn´eticos.Adicionalmente, provee una explicaci´onal origen de la estructura a gran escala del Universo, como son las galaxias. -
The Matter – Antimatter Asymmetry of the Universe and Baryogenesis
The matter – antimatter asymmetry of the universe and baryogenesis Andrew Long Lecture for KICP Cosmology Class Feb 16, 2017 Baryogenesis Reviews in General • Kolb & Wolfram’s Baryon Number Genera.on in the Early Universe (1979) • Rio5o's Theories of Baryogenesis [hep-ph/9807454]} (emphasis on GUT-BG and EW-BG) • Rio5o & Trodden's Recent Progress in Baryogenesis [hep-ph/9901362] (touches on EWBG, GUTBG, and ADBG) • Dine & Kusenko The Origin of the Ma?er-An.ma?er Asymmetry [hep-ph/ 0303065] (emphasis on Affleck-Dine BG) • Cline's Baryogenesis [hep-ph/0609145] (emphasis on EW-BG; cartoons!) Leptogenesis Reviews • Buchmuller, Di Bari, & Plumacher’s Leptogenesis for PeDestrians, [hep-ph/ 0401240] • Buchmulcer, Peccei, & Yanagida's Leptogenesis as the Origin of Ma?er, [hep-ph/ 0502169] Electroweak Baryogenesis Reviews • Cohen, Kaplan, & Nelson's Progress in Electroweak Baryogenesis, [hep-ph/ 9302210] • Trodden's Electroweak Baryogenesis, [hep-ph/9803479] • Petropoulos's Baryogenesis at the Electroweak Phase Transi.on, [hep-ph/ 0304275] • Morrissey & Ramsey-Musolf Electroweak Baryogenesis, [hep-ph/1206.2942] • Konstandin's Quantum Transport anD Electroweak Baryogenesis, [hep-ph/ 1302.6713] Constituents of the Universe formaon of large scale structure (galaxy clusters) stars, planets, dust, people late ame accelerated expansion Image stolen from the Planck website What does “ordinary matter” refer to? Let’s break it down to elementary particles & compare number densities … electron equal, universe is neutral proton x10 billion 3⇣(3) 3 3 n =3 T 168 cm− neutron x7 ⌫ ⇥ 4⇡2 ⌫ ' matter neutrinos photon positron =0 2⇣(3) 3 3 n = T 413 cm− γ ⇡2 CMB ' anti-proton =0 3⇣(3) 3 3 anti-neutron =0 n =3 T 168 cm− ⌫¯ ⇥ 4⇡2 ⌫ ' anti-neutrinos antimatter What is antimatter? First predicted by Dirac (1928). -
Phy306 Introduction to Cosmology Homework 3 Notes
PHY306 INTRODUCTION TO COSMOLOGY HOMEWORK 3 NOTES 1. Show that, for a universe which is not flat, 1 − Ω 1 − Ω = , where Ω = Ω r + Ω m + Ω Λ and the subscript 0 refers to the present time. [2] This was generally quite well done, although rather lacking in explanation. You should really define the Ωs, and you need to explain that you divide the expression for t by that for t0. 2. Suppose that inflation takes place around 10 −35 s after the Big Bang. Assume the following simplified properties of the universe: ● it is matter dominated from the end of inflation to the present day; ● at the present day 0.9 ≤ Ω ≤ 1.1; ● the universe is currently 10 10 years old; ● inflation is driven by a cosmological constant. Using these assumptions, calculate the minimum amount of inflation needed to resolve the flatness problem, and hence determine the value of the cosmological constant required if the inflation period ends at t = 10 −34 s. [4] This was not well done at all, although it is not really a complicated calculation. I think the principal problem was that people simply did not think it through—not only do you not explain what you’re doing to the marker, you frequently don’t explain it to yourself! Some people therefore got hopelessly confused between the two time periods involved—the matter-dominated epoch from 10 −34 s to 10 10 years, and the inflationary period from 10 −35 to 10 −34 s. The most common error—in fact, considerably more common than the right answer—was simply assuming that during the post-inflationary epoch 1 − . -
Scalar Correlation Functions in De Sitter Space from the Stochastic Spectral Expansion
IMPERIAL/TP/2019/TM/03 Scalar correlation functions in de Sitter space from the stochastic spectral expansion Tommi Markkanena;b , Arttu Rajantiea , Stephen Stopyrac and Tommi Tenkanend aDepartment of Physics, Imperial College London, Blackett Laboratory, London, SW7 2AZ, United Kingdom bLaboratory of High Energy and Computational Physics, National Institute of Chemical Physics and Biophysics, R¨avala pst. 10, Tallinn, 10143, Estonia cDepartment of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, United Kingdom dDepartment of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, United States of America E-mail: [email protected], tommi.markkanen@kbfi.ee, [email protected], [email protected], [email protected] Abstract. We consider light scalar fields during inflation and show how the stochastic spec- tral expansion method can be used to calculate two-point correlation functions of an arbitrary local function of the field in de Sitter space. In particular, we use this approach for a massive scalar field with quartic self-interactions to calculate the fluctuation spectrum of the density contrast and compare it to other approximations. We find that neither Gaussian nor linear arXiv:1904.11917v2 [gr-qc] 1 Aug 2019 approximations accurately reproduce the power spectrum, and in fact always overestimate it. For example, for a scalar field with only a quartic term in the potential, V = λφ4=4, we find a blue spectrum with spectral index n 1 = 0:579pλ. − Contents 1 Introduction1 2 The stochastic approach2 2.1 -
The High Redshift Universe: Galaxies and the Intergalactic Medium
The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi M¨unchen2016 The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Koki Kakiichi aus Komono, Mie, Japan M¨unchen, den 15 Juni 2016 Erstgutachter: Prof. Dr. Simon White Zweitgutachter: Prof. Dr. Jochen Weller Tag der m¨undlichen Pr¨ufung:Juli 2016 Contents Summary xiii 1 Extragalactic Astrophysics and Cosmology 1 1.1 Prologue . 1 1.2 Briefly Story about Reionization . 3 1.3 Foundation of Observational Cosmology . 3 1.4 Hierarchical Structure Formation . 5 1.5 Cosmological probes . 8 1.5.1 H0 measurement and the extragalactic distance scale . 8 1.5.2 Cosmic Microwave Background (CMB) . 10 1.5.3 Large-Scale Structure: galaxy surveys and Lyα forests . 11 1.6 Astrophysics of Galaxies and the IGM . 13 1.6.1 Physical processes in galaxies . 14 1.6.2 Physical processes in the IGM . 17 1.6.3 Radiation Hydrodynamics of Galaxies and the IGM . 20 1.7 Bridging theory and observations . 23 1.8 Observations of the High-Redshift Universe . 23 1.8.1 General demographics of galaxies . 23 1.8.2 Lyman-break galaxies, Lyα emitters, Lyα emitting galaxies . 26 1.8.3 Luminosity functions of LBGs and LAEs . 26 1.8.4 Lyα emission and absorption in LBGs: the physical state of high-z star forming galaxies . 27 1.8.5 Clustering properties of LBGs and LAEs: host dark matter haloes and galaxy environment . 30 1.8.6 Circum-/intergalactic gas environment of LBGs and LAEs . -
Measuring Dark Energy and Primordial Non-Gaussianity: Things to (Or Not To?) Worry About!
Measuring Dark Energy and Primordial Non-Gaussianity: Things To (or Not To?) Worry About! Devdeep Sarkar Center for Cosmology, UC Irvine in collaboration with: Scott Sullivan (UCI/UCLA), Shahab Joudaki (UCI), Alexandre Amblard (UCI), Paolo Serra (UCI), Daniel Holz (Chicago/LANL), and Asantha Cooray (UCI) UC Berkeley-LBNL Cosmology Group Seminar September 16, 2008 Outline Outline Start With... Dark Energy Why Pursue Dark Energy? DE Equation of State (EOS) DE from SNe Ia ++ Beware of Systematics Two Population Model Gravitational Lensing Outline Start With... And Then... Dark Energy CMB Bispectrum Why Pursue Dark Energy? Why Non-Gaussianity? DE Equation of State (EOS) Why in CMB Bispectrum? DE from SNe Ia ++ The fNL Beware of Systematics WL of CMB Bispectrum Two Population Model Analytic Sketch Gravitational Lensing Numerical Results Outline Start With... And Then... Dark Energy CMB Bispectrum Why Pursue Dark Energy? Why Non-Gaussianity? DE Equation of State (EOS) Why in CMB Bispectrum? DE from SNe Ia ++ The fNL Beware of Systematics WL of CMB Bispectrum Two Population Model Analytical Sketch Gravitational Lensing Numerical Results Credit: NASA/WMAP Science Team Credit: NASA/WMAP Science Team Credit: NASA/WMAP Science Team THE ASTRONOMICAL JOURNAL, 116:1009È1038, 1998 September ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT ADAM G. RIESS,1 ALEXEI V. FILIPPENKO,1 PETER CHALLIS,2 ALEJANDRO CLOCCHIATTI,3 ALAN DIERCKS,4 PETER M. GARNAVICH,2 RON L. GILLILAND,5 CRAIG J. HOGAN,4 SAURABH JHA,2 ROBERT P. KIRSHNER,2 B. LEIBUNDGUT,6 M. -
Outline of Lecture 2 Baryon Asymmetry of the Universe. What's
Outline of Lecture 2 Baryon asymmetry of the Universe. What’s the problem? Electroweak baryogenesis. Electroweak baryon number violation Electroweak transition What can make electroweak mechanism work? Dark energy Baryon asymmetry of the Universe There is matter and no antimatter in the present Universe. Baryon-to-photon ratio, almost constant in time: nB 10 ηB = 6 10− ≡ nγ · Baryon-to-entropy, constant in time: n /s = 0.9 10 10 B · − What’s the problem? Early Universe (T > 1012 K = 100 MeV): creation and annihilation of quark-antiquark pairs ⇒ n ,n n q q¯ ≈ γ Hence nq nq¯ 9 − 10− nq + nq¯ ∼ How was this excess generated in the course of the cosmological evolution? Sakharov conditions To generate baryon asymmetry, three necessary conditions should be met at the same cosmological epoch: B-violation C-andCP-violation Thermal inequilibrium NB. Reservation: L-violation with B-conservation at T 100 GeV would do as well = Leptogenesis. & ⇒ Can baryon asymmetry be due to electroweak physics? Baryon number is violated in electroweak interactions. Non-perturbative effect Hint: triangle anomaly in baryonic current Bµ : 2 µ 1 gW µνλρ a a ∂ B = 3colors 3generations ε F F µ 3 · · · 32π2 µν λρ ! "Bq a Fµν: SU(2)W field strength; gW : SU(2)W coupling Likewise, each leptonic current (n = e, µ,τ) g2 ∂ Lµ = W ε µνλρFa Fa µ n 32π2 · µν λρ a 1 Large field fluctuations, Fµν ∝ gW− may have g2 Q d3xdt W ε µνλρFa Fa = 0 ≡ 32 2 · µν λρ ' # π Then B B = d3xdt ∂ Bµ =3Q fin− in µ # Likewise L L =Q n, fin− n, in B is violated, B L is not. -
Arxiv:Astro-Ph/9805201V1 15 May 1998 Hitpe Stubbs Christopher .Phillips M
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant To Appear in the Astronomical Journal Adam G. Riess1, Alexei V. Filippenko1, Peter Challis2, Alejandro Clocchiatti3, Alan Diercks4, Peter M. Garnavich2, Ron L. Gilliland5, Craig J. Hogan4,SaurabhJha2,RobertP.Kirshner2, B. Leibundgut6,M. M. Phillips7, David Reiss4, Brian P. Schmidt89, Robert A. Schommer7,R.ChrisSmith710, J. Spyromilio6, Christopher Stubbs4, Nicholas B. Suntzeff7, John Tonry11 ABSTRACT We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ z ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (ΩM ), the cosmological constant (i.e., the vacuum energy density, ΩΛ), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (ΩM =0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant -
AST4220: Cosmology I
AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe . -
What Did the Early Universe Look Like? Key Stage 5
1 What did the early Universe look like? Key Stage 5 Topics covered: Cosmic Microwave Background Radiation, Wien’s displacement law, Doppler Effect Watch the video “What makes the Universe colourful?” https://vimeo.com/213990458 Scientists theorise that the Universe began with the Big Bang around 13.8 billion years ago. Space has been expanding ever since and the initial Big Bang energy has spread out. As a result the temperature of the Universe has fallen and the wavelength of light has stretched out. The history of the Universe can be split into different epochs – see the handout ‘TIMELINE OF THE UNIVERSE’. If we treat the Universe as a black body* then we can work out the peak wavelength of light travelling through the Universe at different epochs by using Wien’s law: 2.898 × 10−3 휆 = 푚푎푥 푇 휆푚푎푥 – peak wavelength emitted by the black body (m - metres) 푇 – temperature of the black body (K – Kelvin) * A black body is an ideal case of an object or system which perfectly absorbs and emits radiation and light and does not reflect any of it. 2 1. Use the ‘TIMELINE OF THE UNIVERSE’ handout to help. For each of the following epochs: 350,000 years (t1 - near the end of the photon epoch) 380,000 years (t2 - at recombination) 13.8 billion years (t3 - present day) a) Complete the table below to work out the peak wavelength (휆푚푎푥) of light that would be travelling through the Universe at that time. epoch Temperature Peak wavelength t1 350,000 years t2 380,000 years t3 13.8 billion years b) Mark these three wavelengths (as vertical lines / arrows) on the diagram below as t1, t2 and t3. -
ASTRON 329/429, Fall 2015 – Problem Set 3
ASTRON 329/429, Fall 2015 { Problem Set 3 Due on Tuesday Nov. 3, in class. All students must complete all problems. 1. More on the deceleration parameter. In problem set 2, we defined the deceleration parameter q0 (see also eq. 6.14 in Liddle's textbook). Show that for a universe containing only pressureless matter with a cosmological constant Ω q = 0 − Ω (t ); (1) 0 2 Λ 0 where Ω0 ≡ Ωm(t0) and t0 is the present time. Assuming further that the universe is spatially flat, express q0 in terms of Ω0 only (2 points). 2. No Big Bang? Observations of the cosmic microwave background and measurements of the abundances of light elements such as lithium believed to have been synthesized when the uni- verse was extremely hot and dense (Big Bang nucleosynthesis) provide strong evidence that the scale factor a ! 0 in the past, i.e. of a \Big Bang." The existence of a Big Bang puts constraints on the allowed combinations of cosmological parameters such Ωm and ΩΛ. Consider for example a fictitious universe that contains only a cosmological constant with ΩΛ > 1 but no matter or radiation (Ωm = Ωrad = 0). Suppose that this universe has a positive Hubble constant H0 at the present time. Show that such a universe did not experience a Big Bang in the past and so violates the \Big Bang" constraint (2 points). 3. Can neutrinos be the dark matter? Thermal equilibrium in the early universe predicts that the number density of neutrinos for each neutrino flavor in the cosmic neutrino background, nν, is related to the number density of photons in the cosmic microwave background, nγ, through nν + nν¯ = (3=11)nγ.