HOMOTOPY-EVERYTHING H-SPACES an H-Space Is A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sheaves and Homotopy Theory
SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case. -
I-Sequential Topological Spaces∗
Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds. -
Homotopy Theory of Infinite Dimensional Manifolds?
Topo/ogy Vol. 5. pp. I-16. Pergamon Press, 1966. Printed in Great Britain HOMOTOPY THEORY OF INFINITE DIMENSIONAL MANIFOLDS? RICHARD S. PALAIS (Received 23 Augrlsf 1965) IN THE PAST several years there has been considerable interest in the theory of infinite dimensional differentiable manifolds. While most of the developments have quite properly stressed the differentiable structure, it is nevertheless true that the results and techniques are in large part homotopy theoretic in nature. By and large homotopy theoretic results have been brought in on an ad hoc basis in the proper degree of generality appropriate for the application immediately at hand. The result has been a number of overlapping lemmas of greater or lesser generality scattered through the published and unpublished literature. The present paper grew out of the author’s belief that it would serve a useful purpose to collect some of these results and prove them in as general a setting as is presently possible. $1. DEFINITIONS AND STATEMENT OF RESULTS Let V be a locally convex real topological vector space (abbreviated LCTVS). If V is metrizable we shall say it is an MLCTVS and if it admits a complete metric then we shall say that it is a CMLCTVS. A half-space in V is a subset of the form {v E V(l(u) L 0} where 1 is a continuous linear functional on V. A chart for a topological space X is a map cp : 0 + V where 0 is open in X, V is a LCTVS, and cp maps 0 homeomorphically onto either an open set of V or an open set of a half space of V. -
Introduction to Topology
Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX 1 Chapter 1. Metric Spaces 1. De¯nition and Examples. As the course progresses we will need to review some basic notions about sets and functions. We begin with a little set theory. Let S be a set. For A; B ⊆ S, put A [ B := fs 2 S j s 2 A or s 2 Bg A \ B := fs 2 S j s 2 A and s 2 Bg S ¡ A := fs 2 S j s2 = Ag 1.1 Theorem. Let A; B ⊆ S. Then S ¡ (A [ B) = (S ¡ A) \ (S ¡ B). Exercise 1. Let A ⊆ S. Prove that S ¡ (S ¡ A) = A. Exercise 2. Let A; B ⊆ S. Prove that S ¡ (A \ B) = (S ¡ A) [ (S ¡ B). (Hint: Either prove this directly as in the proof of Theorem 1.1, or just use the statement of Theorem 1.1 together with Exercise 1.) Exercise 3. Let A; B; C ⊆ S. Prove that A M C ⊆ (A M B) [ (B M C), where A M B := (A [ B) ¡ (A \ B). 1.2 De¯nition. A metric space is a pair (X; d) where X is a non-empty set, and d is a function d : X £ X ! R such that for all x; y; z 2 X (1) d(x; y) ¸ 0, (2) d(x; y) = 0 if and only if x = y, (3) d(x; y) = d(y; x), and (4) d(x; z) · d(x; y) + d(y; z) (\triangle inequality"). In the de¯nition, d is called the distance function (or metric) and X is called the underlying set. -
Local Homotopy Theory, Iwasawa Theory and Algebraic K–Theory
K(1){local homotopy theory, Iwasawa theory and algebraic K{theory Stephen A. Mitchell? University of Washington, Seattle, WA 98195, USA 1 Introduction The Iwasawa algebra Λ is a power series ring Z`[[T ]], ` a fixed prime. It arises in number theory as the pro-group ring of a certain Galois group, and in homotopy theory as a ring of operations in `-adic complex K{theory. Fur- thermore, these two incarnations of Λ are connected in an interesting way by algebraic K{theory. The main goal of this paper is to explore this connection, concentrating on the ideas and omitting most proofs. Let F be a number field. Fix a prime ` and let F denote the `-adic cyclotomic tower { that is, the extension field formed by1 adjoining the `n-th roots of unity for all n 1. The central strategy of Iwasawa theory is to study number-theoretic invariants≥ associated to F by analyzing how these invariants change as one moves up the cyclotomic tower. Number theorists would in fact consider more general towers, but we will be concerned exclusively with the cyclotomic case. This case can be viewed as analogous to the following geometric picture: Let X be a curve over a finite field F, and form a tower of curves over X by extending scalars to the algebraic closure of F, or perhaps just to the `-adic cyclotomic tower of F. This analogy was first considered by Iwasawa, and has been the source of many fruitful conjectures. As an example of a number-theoretic invariant, consider the norm inverse limit A of the `-torsion part of the class groups in the tower. -
On the Homotopy Theory of Stratified Spaces
On the homotopy theory of stratified spaces Peter J. Haine Abstract Let P be a poset. We show that the ∞-category StrP of ∞-categories with a conservative functor to P can be obtained from the ordinary category of P -stratified topological spaces by inverting a class of weak equivalences. For suitably nice P - stratified topological spaces, the corresponding object of StrP is the exit-path ∞- category of MacPherson, Treumann, and Lurie. In particular, the ∞-category of conically P -stratified spaces with equivalences on exit-path ∞-categories inverted embeds fully faithfully into StrP . This provides a stratified form of Grothendieck’s homotopy hypothesis. We then define a combinatorial simplicial model structure on the category of simplicial sets over the nerve of P whose underlying ∞-category is the ∞-category StrP . This model structure on P -stratified simplicial sets then allows us to easily compare other theories of P -stratified spaces to ours and deduce that they all embed into ours. Contents 0 Introduction2 0.1 Statement of results...........................3 0.2 Linear overview.............................5 0.3 Terminology & notations........................6 1 Abstract stratified homotopy types, décollages, & stratified topological spaces7 1.1 Abstract stratified homotopy types as décollages............7 1.2 Recollections on stratified topological spaces.............9 1.3 Stratified topological spaces as décollages............... 11 2 The Joyal–Kan model structure 13 2.1 Definition................................ 13 arXiv:1811.01119v5 [math.AT] 9 Sep 2019 2.2 Fibrant objects in the Joyal–Kan model structure........... 14 2.3 Stratified horn inclusions........................ 16 2.4 Simpliciality of the Joyal–Kan model structure............ 20 2.5 Stability of weak equivalences under filtered colimits........ -
Chapter 2 Metric Spaces and Topology
2.1. METRIC SPACES 29 Definition 2.1.29. The function f is called uniformly continuous if it is continu- ous and, for all > 0, the δ > 0 can be chosen independently of x0. In precise mathematical notation, one has ( > 0)( δ > 0)( x X) ∀ ∃ ∀ 0 ∈ ( x x0 X d (x , x0) < δ ), d (f(x ), f(x)) < . ∀ ∈ { ∈ | X 0 } Y 0 Definition 2.1.30. A function f : X Y is called Lipschitz continuous on A X → ⊆ if there is a constant L R such that dY (f(x), f(y)) LdX (x, y) for all x, y A. ∈ ≤ ∈ Let fA denote the restriction of f to A X defined by fA : A Y with ⊆ → f (x) = f(x) for all x A. It is easy to verify that, if f is Lipschitz continuous on A ∈ A, then fA is uniformly continuous. Problem 2.1.31. Let (X, d) be a metric space and define f : X R by f(x) = → d(x, x ) for some fixed x X. Show that f is Lipschitz continuous with L = 1. 0 0 ∈ 2.1.3 Completeness Suppose (X, d) is a metric space. From Definition 2.1.8, we know that a sequence x , x ,... of points in X converges to x X if, for every δ > 0, there exists an 1 2 ∈ integer N such that d(x , x) < δ for all i N. i ≥ 1 n = 2 n = 4 0.8 n = 8 ) 0.6 t ( n f 0.4 0.2 0 1 0.5 0 0.5 1 − − t Figure 2.1: The sequence of continuous functions in Example 2.1.32 satisfies the Cauchy criterion.