Cray Linux Environment™ (CLE) Software Release Overview Supplement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Recent Supercomputers
Overview of recent supercomputers Aad J. van der Steen HPC Research NCF L.J. Costerstraat 5 6827 AR Arnhem The Netherlands [email protected] www.hpcresearch.nl NCF/HPC Research October 2011 Abstract In this report we give an overview of high-performance computers which are currently available or will become available within a short time frame from vendors; no attempt is made to list all machines that are still in the development phase. The machines are described according to their macro-architectural class. The information about the machines is kept as compact as possible. No attempt is made to quote price information as this is often even more elusive than the performance of a system. In addition, some general information about high-performance computer architectures and the various processors and communication networks employed in these systems is given in order to better appreciate the systems information given in this report. This document reflects the technical momentary state of the supercomputer arena as accurately as possible. However, the author nor NCF take any responsibility for errors or mistakes in this document. We encourage anyone who has comments or remarks on the contents to inform us, so we can improve this report. NCF, the National Computing Facilities Foundation, supports and furthers the advancement of tech- nical and scientific research with and into advanced computing facilities and prepares for the Netherlands national supercomputing policy. Advanced computing facilities are multi-processor vectorcomputers, mas- sively parallel computing systems of various architectures and concepts and advanced networking facilities. Contents 1 Introduction and account 2 2 Architecture of high-performance computers 4 2.1 Themainarchitecturalclasses. -
Workload Management and Application Placement for the Cray Linux Environment™
TMTM Workload Management and Application Placement for the Cray Linux Environment™ S–2496–4101 © 2010–2012 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Inc. U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Cray and Sonexion are federally registered trademarks and Active Manager, Cascade, Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XK6, Cray XK6m, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, LibSci, NodeKARE, RapidArray, The Way to Better Science, Threadstorm, uRiKA, UNICOS/lc, and YarcData are trademarks of Cray Inc. -
Cray XT and Cray XE Y Y System Overview
Crayyy XT and Cray XE System Overview Customer Documentation and Training Overview Topics • System Overview – Cabinets, Chassis, and Blades – Compute and Service Nodes – Components of a Node Opteron Processor SeaStar ASIC • Portals API Design Gemini ASIC • System Networks • Interconnection Topologies 10/18/2010 Cray Private 2 Cray XT System 10/18/2010 Cray Private 3 System Overview Y Z GigE X 10 GigE GigE SMW Fibre Channels RAID Subsystem Compute node Login node Network node Boot /Syslog/Database nodes 10/18/2010 Cray Private I/O and Metadata nodes 4 Cabinet – The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules) – All components of the system are air cooled A blower in the bottom of the cabinet cools the blades within the cabinet • Other rack-mounted devices within the cabinet have their own internal fans for cooling – The PDU is located behind the blower in the back of the cabinet 10/18/2010 Cray Private 5 Liquid Cooled Cabinets Heat exchanger Heat exchanger (XT5-HE LC only) (LC cabinets only) 48Vdc flexible Cage 2 buses Cage 2 Cage 1 Cage 1 Cage VRMs Cage 0 Cage 0 backplane assembly Cage ID controller Interconnect 01234567 Heat exchanger network cable Cage inlet (LC cabinets only) connection air temp sensor Airflow Heat exchanger (slot 3 rail) conditioner 48Vdc shelf 3 (XT5-HE LC only) 48Vdc shelf 2 L1 controller 48Vdc shelf 1 Blower speed controller (VFD) Blooewer PDU line filter XDP temperature XDP interface & humidity sensor -
Parallelization Hardware Architecture Type to Enter Text
Parallelization Hardware architecture Type to enter text Delft University of Technology Challenge the future Contents • Introduction • Classification of systems • Topology • Clusters and Grid • Fun Hardware 2 hybrid parallel vector superscalar scalar 3 Why Parallel Computing Primary reasons: • Save time • Solve larger problems • Provide concurrency (do multiple things at the same time) Classification of HPC hardware • Architecture • Memory organization 5 1st Classification: Architecture • There are several different methods used to classify computers • No single taxonomy fits all designs • Flynn's taxonomy uses the relationship of program instructions to program data • SISD - Single Instruction, Single Data Stream • SIMD - Single Instruction, Multiple Data Stream • MISD - Multiple Instruction, Single Data Stream • MIMD - Multiple Instruction, Multiple Data Stream 6 Flynn’s Taxonomy • SISD: single instruction and single data stream: uniprocessor • SIMD: vector architectures: lower flexibility • MISD: no commercial multiprocessor: imagine data going through a pipeline of execution engines • MIMD: most multiprocessors today: easy to construct with off-the-shelf computers, most flexibility 7 SISD • One instruction stream • One data stream • One instruction issued on each clock cycle • One instruction executed on single element(s) of data (scalar) at a time • Traditional ‘von Neumann’ architecture (remember from introduction) 8 SIMD • Also von Neumann architectures but more powerful instructions • Each instruction may operate on more than one data element • Usually intermediate host executes program logic and broadcasts instructions to other processors • Synchronous (lockstep) • Rating how fast these machines can issue instructions is not a good measure of their performance • Two major types: • Vector SIMD • Parallel SIMD 9 Vector SIMD • Single instruction results in multiple operands being updated • Scalar processing operates on single data elements. -
The Gemini Network
The Gemini Network Rev 1.1 Cray Inc. © 2010 Cray Inc. All Rights Reserved. Unpublished Proprietary Information. This unpublished work is protected by trade secret, copyright and other laws. Except as permitted by contract or express written permission of Cray Inc., no part of this work or its content may be used, reproduced or disclosed in any form. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Autotasking, Cray, Cray Channels, Cray Y-MP, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, CCI, CCMT, CF77, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Ada, Cray Animation Theater, Cray APP, Cray Apprentice2, Cray C90, Cray C90D, Cray C++ Compiling System, Cray CF90, Cray EL, Cray Fortran Compiler, Cray J90, Cray J90se, Cray J916, Cray J932, Cray MTA, Cray MTA-2, Cray MTX, Cray NQS, Cray Research, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+, Cray SHMEM, Cray S-MP, Cray SSD-T90, Cray SuperCluster, Cray SV1, Cray SV1ex, Cray SX-5, Cray SX-6, Cray T90, Cray T916, Cray T932, Cray T3D, Cray T3D MC, Cray T3D MCA, Cray T3D SC, Cray T3E, Cray Threadstorm, Cray UNICOS, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray X-MP, Cray XMS, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray Y-MP EL, Cray-1, Cray-2, Cray-3, CrayDoc, CrayLink, Cray-MP, CrayPacs, CrayPat, CrayPort, Cray/REELlibrarian, CraySoft, CrayTutor, CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power…, Dgauss, Docview, EMDS, GigaRing, HEXAR, HSX, IOS, ISP/Superlink, LibSci, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RapidArray, RQS, SEGLDR, SMARTE, SSD, SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, TurboKiva, UNICOS MAX, UNICOS/lc, and UNICOS/mp are trademarks of Cray Inc. -
Pubtex Output 2011.12.12:1229
TM Using Cray Performance Analysis Tools S–2376–53 © 2006–2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Inc. U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014. All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable. Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable. Cray, LibSci, and PathScale are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC, Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM, Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XK6, Cray XMT, Cray XR1, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, Sonexion, The Way to Better Science, Threadstorm, uRiKA, and UNICOS/lc are trademarks of Cray Inc. -
Research J Inc
c: RESEARCH J INC. CRAY® COMPUTER SYSTEMS eFT77 REFERENCE MANUAL S,R-0018 r<-w ~ Gopyright© 1986, 1988 by Gray Research, Inc. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Gray Research, Inc. RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0018 Eadchhtime this manu~1 is r~vised and reprinted. all changes issued against the previous version are incorporated into the new version an t e new verSion IS assigned an alphabetic level. ~very page chan~ed by a reprint. with revisio~ has the revision level in the lower right hand corner. Changes to part of a page are noted y ~ changl!. bar In the margin directly o~poslte the c~a~ge. A change bar in the margin opposite the page number indicates that the entire page IS new. If the manual IS rewritten. the revIsion level changes but the manual does not contain change bars. Reql:'est.s for copies of C~ay Research. Inc. publications should be directed to the Distribution Center and comments about these publications should be directed to: CRAY RESEARCH. INC. 1345 Northland Drive Mendota Heights. Minnesota 55120 Revision Description April 1986 - Original printing. A September 1986 - Changes are the SUPPRESS directive and the TARGET command. Sections on input/output have been reorganized, with a new introduction in section 7. Other editorial changes have been made. Trademarks are now documented in the record of revision. The previous version is obsolete. B February 1988 - This reprint with revision adds the INCLUDE statement, Loopmark feature, BL and NOBL directives, ALLOC directive, INTEGER directive, I/INDEF option, -v option (UNICOS only), EDN keyword (COS only), and P and w options (CRAY-2 systems only). -
Performance Evaluation of the Cray X1 Distributed Shared Memory Architecture
Performance Evaluation of the Cray X1 Distributed Shared Memory Architecture Tom Dunigan Jeffrey Vetter Pat Worley Oak Ridge National Laboratory Highlights º Motivation – Current application requirements exceed contemporary computing capabilities – Cray X1 offered a ‘new’ system balance º Cray X1 Architecture Overview – Nodes architecture – Distributed shared memory interconnect – Programmer’s view º Performance Evaluation – Microbenchmarks pinpoint differences across architectures – Several applications show marked improvement ORNL/JV 2 1 ORNL is Focused on Diverse, Grand Challenge Scientific Applications SciDAC Genomes Astrophysics to Life Nanophase Materials SciDAC Climate Application characteristics vary dramatically! SciDAC Fusion SciDAC Chemistry ORNL/JV 3 Climate Case Study: CCSM Simulation Resource Projections Science drivers: regional detail / comprehensive model Machine and Data Requirements 1000 750 340.1 250 154 100 113.3 70.3 51.5 Tflops 31.9 23.4 Tbytes 14.5 10 10.6 6.6 4.8 3 2.2 1 1 dyn veg interactivestrat chem biogeochem eddy resolvcloud resolv trop chemistry Years CCSM Coupled Model Resolution Configurations: 2002/2003 2008/2009 Atmosphere 230kmL26 30kmL96 • Blue line represents total national resource dedicated Land 50km 5km to CCSM simulations and expected future growth to Ocean 100kmL40 10kmL80 meet demands of increased model complexity Sea Ice 100km 10km • Red line show s data volume generated for each Model years/day 8 8 National Resource 3 750 century simulated (dedicated TF) Storage (TB/century) 1 250 At 2002-3 scientific complexity, a century simulation required 12.5 days. ORNL/JV 4 2 Engaged in Technical Assessment of Diverse Architectures for our Applications º Cray X1 Cray X1 º IBM SP3, p655, p690 º Intel Itanium, Xeon º SGI Altix º IBM POWER5 º FPGAs IBM Federation º Planned assessments – Cray X1e – Cray X2 – Cray Red Storm – IBM BlueGene/L – Optical processors – Processors-in-memory – Multithreading – Array processors, etc. -
IUCAA CRAY CX1 Supercomputer Users Guide (V2.1)
IUCAA CRAY CX1 supercomputer Users Guide (v2.1) 1 Introduction Cray CX1 at the Inter-University Centre for Astronomy & Astrophysics (IUCAA) Pune is a desk- top/deskside supercomputer with 1 head node, 1 GPU node and 4 compute nodes. Each node has two 2.67 Ghz Intel Xeon(5650) processors, with every processor having six cores. In total there are 72 cores on the systems. Since there are twelve cores on every node, one can use twelve OpenMP hardware threads. However, the system supports more than 12 OpenMP threads on all the nodes (apart from the head node). Every node of the system has 24 GB RAM and in total the system has 144 GB RAM. At present there is around 5 TB disk space available for users on three dierent partitions, named /home, /data1/ and /data2. Keeping in mind that this is a small system and not more than ten users will be using it, every user can get 100 GB space in the home area. Data of common use (like WMAP and Planck data) is kept in a common area /data1/cmb_data and have the right permissions so that users can use it. The Cray CX1 is equipped with a 16 port RJ-45 10Base T, 100Base T, 1000Base T Gigabit Ethernet Switch, with the data transfer capability of 1 Gbps, supporting Ethernet, Fast Ethernet, and Gigabit Ethernet Data Link Protocol. The list of nodes is give in the Table (1). There are many software, packages and libraries already installed in the system and more (open 1 S. -
Use Style: Paper Title
Titan: Early experience with the Cray XK6 at Oak Ridge National Laboratory Arthur S. Bland, Jack C. Wells, Otis E. Messer, Oscar R. Hernandez, James H. Rogers National Center for Computational Sciences Oak Ridge National Laboratory Oak Ridge, Tennessee, 37831, USA [blandas, wellsjc, bronson, oscar, jrogers, at ORNL.GOV] Abstract— In 2011, Oak Ridge National Laboratory began an turbines, building a virtual nuclear reactor to increase power upgrade to Jaguar to convert it from a Cray XT5 to a Cray output and longevity of nuclear power plants, modeling the XK6 system named Titan. This is being accomplished in two ITER prototype fusion reactor, predicting impacts from phases. The first phase, completed in early 2012, replaced all of climate change, earthquakes and tsunamis, and improving the XT5 compute blades with XK6 compute blades, and the aerodynamics of vehicles to increase fuel economy. replaced the SeaStar interconnect with Cray’s new Gemini Access to Titan is available through several allocation network. Each compute node is configured with an AMD programs. More information about access is available Opteron™ 6274 16-core processors and 32 gigabytes of DDR3- through the OLCF web site at: 1600 SDRAM. The system aggregate includes 600 terabytes of http://www.olcf.ornl.gov/support/getting-started/. system memory. In addition, the first phase includes 960 The OLCF worked with Cray to design Titan to be an NVIDIA X2090 Tesla processors. In the second phase, ORNL will add NVIDIA’s next generation Tesla processors to exceptionally well-balanced system for modeling and increase the combined system peak performance to over 20 simulation at the highest end of high-performance PFLOPS. -
Titan Introduction and Timeline Bronson Messer
Titan Introduction and Timeline Presented by: Bronson Messer Scientific Computing Group Oak Ridge Leadership Computing Facility Disclaimer: There is no contract with the vendor. This presentation is the OLCF’s current vision that is awaiting final approval. Subject to change based on contractual and budget constraints. We have increased system performance by 1,000 times since 2004 Hardware scaled from single-core Scaling applications and system software is the biggest through dual-core to quad-core and challenge dual-socket , 12-core SMP nodes • NNSA and DoD have funded much • DOE SciDAC and NSF PetaApps programs are funding of the basic system architecture scalable application work, advancing many apps research • DOE-SC and NSF have funded much of the library and • Cray XT based on Sandia Red Storm applied math as well as tools • IBM BG designed with Livermore • Computational Liaisons key to using deployed systems • Cray X1 designed in collaboration with DoD Cray XT5 Systems 12-core, dual-socket SMP Cray XT4 Cray XT4 Quad-Core 2335 TF and 1030 TF Cray XT3 Cray XT3 Dual-Core 263 TF Single-core Dual-Core 119 TF Cray X1 54 TF 3 TF 26 TF 2005 2006 2007 2008 2009 2 Disclaimer: No contract with vendor is in place Why has clock rate scaling ended? Power = Capacitance * Frequency * Voltage2 + Leakage • Traditionally, as Frequency increased, Voltage decreased, keeping the total power in a reasonable range • But we have run into a wall on voltage • As the voltage gets smaller, the difference between a “one” and “zero” gets smaller. Lower voltages mean more errors. -
Introduction to the Oak Ridge Leadership Computing Facility for CSGF Fellows Bronson Messer
Introduction to the Oak Ridge Leadership Computing Facility for CSGF Fellows Bronson Messer Acting Group Leader Scientific Computing Group National Center for Computational Sciences Theoretical Astrophysics Group Oak Ridge National Laboratory Department of Physics & Astronomy University of Tennessee Outline • The OLCF: history, organization, and what we do • The upgrade to Titan – Interlagos processors with GPUs – Gemini Interconnect – Software, etc. • The CSGF Director’s Discretionary Program • Questions and Discussion 2 ORNL has a long history in 2007 High Performance Computing IBM Blue Gene/P ORNL has had 20 systems 1996-2002 on the lists IBM Power 2/3/4 1992-1995 Intel Paragons 1985 Cray X-MP 1969 IBM 360/9 1954 2003-2005 ORACLE Cray X1/X1E 3 Today, we have the world’s most powerful computing facility Peak performance 2.33 PF/s #2 Memory 300 TB Disk bandwidth > 240 GB/s Square feet 5,000 Power 7 MW Dept. of Energy’s Jaguar most powerful computer Peak performance 1.03 PF/s #8 Memory 132 TB Disk bandwidth > 50 GB/s Square feet 2,300 National Science Kraken Power 3 MW Foundation’s most powerful computer Peak Performance 1.1 PF/s Memory 248 TB #32 Disk Bandwidth 104 GB/s Square feet 1,600 National Oceanic and Power 2.2 MW Atmospheric Administration’s NOAA Gaea most powerful computer 4 We have increased system performance by 1,000 times since 2004 Hardware scaled from single-core Scaling applications and system software is the biggest through dual-core to quad-core and challenge dual-socket , 12-core SMP nodes • NNSA and DoD have funded