Design and Evaluation of a Cloud Native Data Analysis Pipeline for Cyber Physical Production Systems

Total Page:16

File Type:pdf, Size:1020Kb

Design and Evaluation of a Cloud Native Data Analysis Pipeline for Cyber Physical Production Systems Producción Académica Ferrer Daub, Facundo Javier Design and evaluation of a cloud native data analysis pipeline for cyber physical production systems Tesis para la obtención del título de posgrado de Magister en Dirección de Empresas Director: Srur, Leandro Documento disponible para su consulta y descarga en Biblioteca Digital - Producción Académica, repositorio institucional de la Universidad Católica de Córdoba, gestionado por el Sistema de Bibliotecas de la UCC. Esta obra está bajo licencia 2.5 de Creative Commons Argentina. CC |®@©I Atribución-No comercial-Sin obras derivadas 2.5 ÉICDA U'IVnSIDAD CATOLICA .'i c Okcxjüa UNIVERSIDAD CATOLICA DE CORDOBA INSTITUO DE CIENCIAS DE LA ADMINISTRACIÓN TRABAJO FINAL DE MAESTRÍA EN DIRECCIÓN DE EMPRESAS DESIGN AND EVALUATION OF A CLOUD NATIVE DATA ANALYSIS PIPELINE FOR CYBER PHYSICAL PRODUCTION SYSTEMS AUTOR: FACUNDO JAVIER FERRER DAUB EMAIL: [email protected] DIRECTOR: Leandro Srur CÓRDOBA 2017 ABSTRACT Since 1991 with the birth of the World Wide Web the rate of data growth has been growing with a record level in the last couple of years. Big companies tackled down this data growth with expensive and enormous data centres to process and get value of this data. From social media, Internet of Things (IoT), new business process, monitoring and multimedia, the capacities of those data centres started to be a problem and required continuos and expensive expansion. Thus, Big Data was something that only a few were able to access. This changed fast when Amazon launched Amazon Web Services (AWS) around 15 years ago and gave the origins to the public cloud. At that time, the capabilities were still very new and reduced but 10 years later the cloud was a whole new business that changed for ever the Big Data business. This not only commoditised computer power but it was accompanied by a price model that let medium and small players the possibility to access it. In consequence, new problems arised regarding the nature of these distributed systems and the software architectures required for proper data processing. The present job analyse the type of typical Big Data workloads and propose an architecture for a cloud native data analysis pipeline. Lastly, it provides a chapter for tools and services that can be used in the architecture taking advantage of their open source nature and the cloud price models. UNIVERSIDAD CATOLICA DE CORDOBA INSTITUTO DE CIENCIAS DE LA ADMINISTRACION TRABAJO FINAL DE MAESTRÍA EN DIRECCIÓN DE EMPRESAS DESIGN AND EVALUATION OF A CLOUD NATIVE DATA ANALYSIS PIPELINE FOR CYBER PHYSICAL PRODUCTION SYSTEMS AUTOR: FACUNDO JAVIER FERRER DAUB DIRECTOR: LEANDRO SRUR CORDOBA 2017 CONTENTS I Introduction 4 1.1 Organization ..................................................................................... 4 1.2 Problem statem ent............................................................................. 4 1.3 State of the art and open problems.................................................. 6 II Data Types and Sources 8 2.1 Data types ........................................................................................ 8 2.1.1 Nondependency-oriented data ............................................ 9 2.1.2 Dependency-oriented d a t a .................................................. 11 2.2 Data properties ................................................................................... 12 2.3 Data sources ..................................................................................... 14 2.3.1 Information Technology (IT) .................................................. 14 2.3.2 Physical W o rld ....................................................................... 16 2.4 Metadata ........................................................................................... 17 2.4.1 What means metadata........................................................... 17 2.4.2 Importance of m etadata........................................................ 18 III Workloads 19 3.1 Streams and Batch ............................................................................. 19 IV Architecture Building Blocks 24 4.1 Introduction ........................................................................................ 24 4.2 Building Blocks ................................................................................... 25 4.2.1 Acquisition and Recording..................................................... 25 4.2.2 Extraction, Cleaning and Annotation................................... 27 4.2.3 Integration, Aggregation and Representation..................... 27 4.2.4 Modeling and Analysis........................................................... 28 4.2.5 Interpretation.......................................................................... 29 V Architecture Allocation to Tools and Services 30 5.1 Tools.................................................................................................... 30 5.1.1 Apache F lu m e ....................................................................... 30 5.1.2 Apache Sqoop ....................................................................... 31 5.1.3 Apache Kafka ....................................................................... 32 5.1.4 Apache Storm ....................................................................... 33 5.1.5 Apache H a d o o p .................................................................... 33 5.1.6 Apache Spark ....................................................................... 35 1 5.1.7 Apache F lin k ..............................................................................36 5.1.8 Apache Hive ..............................................................................37 5.1.9 Apache Imapala ........................................................................37 5.1.10 Apache P ig .................................................................................38 5.2 Cloud Providers and Services...............................................................39 5.2.1 A W S S 3 .......................................................................................41 5.2.2 AWS Kinesis F a m ily ..................................................................41 5.2.3 AWS Lambda..............................................................................41 5.2.4 AWS Elastic M apR educe.........................................................42 5.2.5 AWS Q u icksig h t........................................................................42 5.2.6 DataTorrent.................................................................................43 VI Summary and Outlook 44 6.1 Conclusions ........................................................................................ ....44 6.2 Limitations ........................................................................................ ....45 6.3 Outlook .............................................................................................. ....45 2 3 I. INTRODUCTION 1.1 Organization This dissertation shows how a cloud native architecture, can help system designers to implement analytic data pipelines. This thesis is organized as fol- lows. Chapter 1 explains the statement of problem, basic principles of data ana- lytics are outlined in order to better define specifics aspects of the data pipeline modeling addressed in this work. In addition, the current state of the art and the open problems are explained here too. Chapter 2, introduces the different data types that are described in the the­ sis. Among them, the related data sources reviewed are explaining here. Finally, a mention to the importance of the metadata, the data about the data, is included. Handling of the different data types can be done in two main ways, stream and batch processing. The characterization of these workloads, with its related data pedigree is discussed in Chapter 3. Furthermore, the privacy of data col- lected and processed is an important area explained as well in this chapter. In Chapter 4 describes, the architecture building blocks, not only from a technical point of view but in regards of the business value of the presented ar­ chitecture; and the importance of a cost-efficient pipeline by a proper selection of the building blocks. Chapter 5 and 6, try to give a short overview of different tools and services that can be used in each of the different phases of the data pipeline. Besides, an experimental setup of the data pipeline is done with the analysis of real-world data-sets and its corresponding results. Chapter 7 discusses the results of the whole work as well as presents directions for future work. Last but not the least, other topics like, data backup, replication and normalization are contained within the Appendices. 1.2 Problem statement In 1991 computer scientist Tim Berners-Lee announced the birth of what would become the World Wide Web as we know it today, interconnected web of data, accessible to anyone from anywhere. Since then, an explosion of informa- tion took place in the digital world (Berners-Lee, 1991, p. 3). Almost ten years later, Doug Laney, was defining data growth challenges and opportunities as the three of what will come to be the commonly-accepted characteristics of Big Data, volume, velocity and variety (Laney, 2001, p. 70). 4 And later, some scholars added veracity and value as a 5 Vs model (Assuncao, Calheiros, Bianchi, Netto, & Buyya, 2015). IDC started a research in 2005 on how big is the digital world and in the partial results published in the 2007 report, the size by 2006 was 161 exabytes and forecasted
Recommended publications
  • Working with Storm Topologies Date of Publish: 2018-08-13
    Apache Storm 3 Working with Storm Topologies Date of Publish: 2018-08-13 http://docs.hortonworks.com Contents Packaging Storm Topologies................................................................................... 3 Deploying and Managing Apache Storm Topologies............................................4 Configuring the Storm UI.................................................................................................................................... 4 Using the Storm UI.............................................................................................................................................. 5 Monitoring and Debugging an Apache Storm Topology......................................6 Enabling Dynamic Log Levels.............................................................................................................................6 Setting and Clearing Log Levels Using the Storm UI.............................................................................6 Setting and Clearing Log Levels Using the CLI..................................................................................... 7 Enabling Topology Event Logging......................................................................................................................7 Configuring Topology Event Logging.....................................................................................................8 Enabling Event Logging...........................................................................................................................8
    [Show full text]
  • Apache Flink™: Stream and Batch Processing in a Single Engine
    Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected][email protected][email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time.
    [Show full text]
  • DSP Frameworks DSP Frameworks We Consider
    Università degli Studi di Roma “Tor Vergata” Dipartimento di Ingegneria Civile e Ingegneria Informatica DSP Frameworks Corso di Sistemi e Architetture per Big Data A.A. 2017/18 Valeria Cardellini DSP frameworks we consider • Apache Storm (with lab) • Twitter Heron – From Twitter as Storm and compatible with Storm • Apache Spark Streaming (lab) – Reduce the size of each stream and process streams of data (micro-batch processing) • Apache Flink • Apache Samza • Cloud-based frameworks – Google Cloud Dataflow – Amazon Kinesis Streams Valeria Cardellini - SABD 2017/18 1 Apache Storm • Apache Storm – Open-source, real-time, scalable streaming system – Provides an abstraction layer to execute DSP applications – Initially developed by Twitter • Topology – DAG of spouts (sources of streams) and bolts (operators and data sinks) Valeria Cardellini - SABD 2017/18 2 Stream grouping in Storm • Data parallelism in Storm: how are streams partitioned among multiple tasks (threads of execution)? • Shuffle grouping – Randomly partitions the tuples • Field grouping – Hashes on a subset of the tuple attributes Valeria Cardellini - SABD 2017/18 3 Stream grouping in Storm • All grouping (i.e., broadcast) – Replicates the entire stream to all the consumer tasks • Global grouping – Sends the entire stream to a single task of a bolt • Direct grouping – The producer of the tuple decides which task of the consumer will receive this tuple Valeria Cardellini - SABD 2017/18 4 Storm architecture • Master-worker architecture Valeria Cardellini - SABD 2017/18 5 Storm
    [Show full text]
  • Apache Apex: Next Gen Big Data Analytics
    Apache Apex: Next Gen Big Data Analytics Thomas Weise <[email protected]> @thweise PMC Chair Apache Apex, Architect DataTorrent Apache Big Data Europe, Sevilla, Nov 14th 2016 Stream Data Processing Data Delivery Transform / Analytics Real-time visualization, … Declarative SQL API Data Beam Beam SAMOA Operator SAMOA DAG API Sources Library Events Logs Oper1 Oper2 Oper3 Sensor Data Social Databases CDC (roadmap) 2 Industries & Use Cases Financial Services Ad-Tech Telecom Manufacturing Energy IoT Real-time Call detail record customer facing (CDR) & Supply chain Fraud and risk Smart meter Data ingestion dashboards on extended data planning & monitoring analytics and processing key performance record (XDR) optimization indicators analysis Understanding Reduce outages Credit risk Click fraud customer Preventive & improve Predictive assessment detection behavior AND maintenance resource analytics context utilization Packaging and Improve turn around Asset & Billing selling Product quality & time of trade workforce Data governance optimization anonymous defect tracking settlement processes management customer data HORIZONTAL • Large scale ingest and distribution • Enforcing data quality and data governance requirements • Real-time ELTA (Extract Load Transform Analyze) • Real-time data enrichment with reference data • Dimensional computation & aggregation • Real-time machine learning model scoring 3 Apache Apex • In-memory, distributed stream processing • Application logic broken into components (operators) that execute distributed in a cluster •
    [Show full text]
  • The Cloud‐Based Demand‐Driven Supply Chain
    The Cloud-Based Demand-Driven Supply Chain Wiley & SAS Business Series The Wiley & SAS Business Series presents books that help senior-level managers with their critical management decisions. Titles in the Wiley & SAS Business Series include: The Analytic Hospitality Executive by Kelly A. McGuire Analytics: The Agile Way by Phil Simon Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications by Bart Baesens A Practical Guide to Analytics for Governments: Using Big Data for Good by Marie Lowman Bank Fraud: Using Technology to Combat Losses by Revathi Subramanian Big Data Analytics: Turning Big Data into Big Money by Frank Ohlhorst Big Data, Big Innovation: Enabling Competitive Differentiation through Business Analytics by Evan Stubbs Business Analytics for Customer Intelligence by Gert Laursen Business Intelligence Applied: Implementing an Effective Information and Communications Technology Infrastructure by Michael Gendron Business Intelligence and the Cloud: Strategic Implementation Guide by Michael S. Gendron Business Transformation: A Roadmap for Maximizing Organizational Insights by Aiman Zeid Connecting Organizational Silos: Taking Knowledge Flow Management to the Next Level with Social Media by Frank Leistner Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry by Laura Madsen Delivering Business Analytics: Practical Guidelines for Best Practice by Evan Stubbs ii Demand-Driven Forecasting: A Structured Approach to Forecasting, Second Edition by Charles Chase Demand-Driven Inventory
    [Show full text]
  • Apache Storm Tutorial
    Apache Storm Apache Storm About the Tutorial Storm was originally created by Nathan Marz and team at BackType. BackType is a social analytics company. Later, Storm was acquired and open-sourced by Twitter. In a short time, Apache Storm became a standard for distributed real-time processing system that allows you to process large amount of data, similar to Hadoop. Apache Storm is written in Java and Clojure. It is continuing to be a leader in real-time analytics. This tutorial will explore the principles of Apache Storm, distributed messaging, installation, creating Storm topologies and deploy them to a Storm cluster, workflow of Trident, real-time applications and finally concludes with some useful examples. Audience This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics using Apache Storm framework. This tutorial will give you enough understanding on creating and deploying a Storm cluster in a distributed environment. Prerequisites Before proceeding with this tutorial, you must have a good understanding of Core Java and any of the Linux flavors. Copyright & Disclaimer © Copyright 2014 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors.
    [Show full text]
  • Pohorilyi Magistr.Pdf
    НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО» Факультет інформатики та обчислювальної техніки (повна назва інституту/факультету) Кафедра автоматики та управління в технічних системах (повна назва кафедри) «На правах рукопису» «До захисту допущено» УДК ______________ Завідувач кафедри __________ _____________ (підпис) (ініціали, прізвище) “___”_____________20__ р. Магістерська дисертація зі спеціальності (спеціалізації)126 Інформаційні системи та технології на тему: Система збору та аналізу тексових даних з соціальних мереж________ ____________________________________________________________________ Виконав: студент __6__ курсу, групи ___ІА-з82мп______ (шифр групи) Погорілий Богдан Анатолійович ____________________________ __________ (прізвище, ім’я, по батькові) (підпис) Науковий керівник: завідувач кафедри, д.т.н., професор Ролік О. І. __________ (посада, науковий ступінь, вчене звання, прізвище та ініціали) (підпис) Консультант: _______________________________ __________ (назва розділу) (науковий ступінь, вчене звання, , прізвище, ініціали) (підпис) Рецензент: _______________________________________________ __________ (посада, науковий ступінь, вчене звання, науковий ступінь, прізвище та ініціали) (підпис) Засвідчую, що у цій магістерській дисертації немає запозичень з праць інших авторів без відповідних посилань. Студент _____________ (підпис) Київ – 2019 року 3 Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет (інститут)
    [Show full text]
  • HDP 3.1.4 Release Notes Date of Publish: 2019-08-26
    Release Notes 3 HDP 3.1.4 Release Notes Date of Publish: 2019-08-26 https://docs.hortonworks.com Release Notes | Contents | ii Contents HDP 3.1.4 Release Notes..........................................................................................4 Component Versions.................................................................................................4 Descriptions of New Features..................................................................................5 Deprecation Notices.................................................................................................. 6 Terminology.......................................................................................................................................................... 6 Removed Components and Product Capabilities.................................................................................................6 Testing Unsupported Features................................................................................ 6 Descriptions of the Latest Technical Preview Features.......................................................................................7 Upgrading to HDP 3.1.4...........................................................................................7 Behavioral Changes.................................................................................................. 7 Apache Patch Information.....................................................................................11 Accumulo...........................................................................................................................................................
    [Show full text]
  • Apache Calcite: a Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources
    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources Edmon Begoli Jesús Camacho-Rodríguez Julian Hyde Oak Ridge National Laboratory Hortonworks Inc. Hortonworks Inc. (ORNL) Santa Clara, California, USA Santa Clara, California, USA Oak Ridge, Tennessee, USA [email protected] [email protected] [email protected] Michael J. Mior Daniel Lemire David R. Cheriton School of University of Quebec (TELUQ) Computer Science Montreal, Quebec, Canada University of Waterloo [email protected] Waterloo, Ontario, Canada [email protected] ABSTRACT argued that specialized engines can offer more cost-effective per- Apache Calcite is a foundational software framework that provides formance and that they would bring the end of the “one size fits query processing, optimization, and query language support to all” paradigm. Their vision seems today more relevant than ever. many popular open-source data processing systems such as Apache Indeed, many specialized open-source data systems have since be- Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite’s ar- come popular such as Storm [50] and Flink [16] (stream processing), chitecture consists of a modular and extensible query optimizer Elasticsearch [15] (text search), Apache Spark [47], Druid [14], etc. with hundreds of built-in optimization rules, a query processor As organizations have invested in data processing systems tai- capable of processing a variety of query languages, an adapter ar- lored towards their specific needs, two overarching problems have chitecture designed for extensibility, and support for heterogeneous arisen: data models and stores (relational, semi-structured, streaming, and • The developers of such specialized systems have encoun- geospatial). This flexible, embeddable, and extensible architecture tered related problems, such as query optimization [4, 25] is what makes Calcite an attractive choice for adoption in big- or the need to support query languages such as SQL and data frameworks.
    [Show full text]
  • Hdf® Stream Developer 3 Days
    TRAINING OFFERING | DEV-371 HDF® STREAM DEVELOPER 3 DAYS This course is designed for Data Engineers, Data Stewards and Data Flow Managers who need to automate the flow of data between systems as well as create real-time applications to ingest and process streaming data sources using Hortonworks Data Flow (HDF) environments. Specific technologies covered include: Apache NiFi, Apache Kafka and Apache Storm. The course will culminate in the creation of a end-to-end exercise that spans this HDF technology stack. PREREQUISITES Students should be familiar with programming principles and have previous experience in software development. First-hand experience with Java programming and developing within an IDE are required. Experience with Linux and a basic understanding of DataFlow tools and would be helpful. No prior Hadoop experience required. TARGET AUDIENCE Developers, Data & Integration Engineers, and Architects who need to automate data flow between systems and/or develop streaming applications. FORMAT 50% Lecture/Discussion 50% Hands-on Labs AGENDA SUMMARY Day 1: Introduction to HDF Components, Apache NiFi dataflow development Day 2: Apache Kafka, NiFi integration with HDF/HDP, Apache Storm architecture Day 3: Storm management options, multi-language support, Kafka integration DAY 1 OBJECTIVES • Introduce HDF’s components; Apache NiFi, Apache Kafka, and Apache Storm • NiFi architecture, features, and characteristics • NiFi user interface; processors and connections in detail • NiFi dataflow assembly • Processor Groups and their elements
    [Show full text]
  • ADMI Cloud Computing Presentation
    ECSU/IU NSF EAGER: Remote Sensing Curriculum ADMI Cloud Workshop th th Enhancement using Cloud Computing June 10 – 12 2016 Day 1 Introduction to Cloud Computing with Amazon EC2 and Apache Hadoop Prof. Judy Qiu, Saliya Ekanayake, and Andrew Younge Presented By Saliya Ekanayake 6/10/2016 1 Cloud Computing • What’s Cloud? Defining this is not worth the time Ever heard of The Blind Men and The Elephant? If you still need one, see NIST definition next slide The idea is to consume X as-a-service, where X can be Computing, storage, analytics, etc. X can come from 3 categories Infrastructure-as-a-S, Platform-as-a-Service, Software-as-a-Service Classic Cloud Computing Computing IaaS PaaS SaaS My washer Rent a washer or two or three I tell, Put my clothes in and My bleach My bleach comforter dry clean they magically appear I wash I wash shirts regular clean clean the next day 6/10/2016 2 The Three Categories • Software-as-a-Service Provides web-enabled software Ex: Google Gmail, Docs, etc • Platform-as-a-Service Provides scalable computing environments and runtimes for users to develop large computational and big data applications Ex: Hadoop MapReduce • Infrastructure-as-a-Service Provide virtualized computing and storage resources in a dynamic, on-demand fashion. Ex: Amazon Elastic Compute Cloud 6/10/2016 3 The NIST Definition of Cloud Computing? • “Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” On-demand self-service, broad network access, resource pooling, rapid elasticity, measured service, http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf • However, formal definitions may not be very useful.
    [Show full text]
  • Installing and Configuring Apache Storm Date of Publish: 2018-08-30
    Apache Kafka 3 Installing and Configuring Apache Storm Date of Publish: 2018-08-30 http://docs.hortonworks.com Contents Installing Apache Storm.......................................................................................... 3 Configuring Apache Storm for a Production Environment.................................7 Configuring Storm for Supervision......................................................................................................................8 Configuring Storm Resource Usage.....................................................................................................................9 Apache Kafka Installing Apache Storm Installing Apache Storm Before you begin • HDP cluster stack version 2.5.0 or later. • (Optional) Ambari version 2.4.0 or later. Procedure 1. Click the Ambari "Services" tab. 2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service Wizard, displaying the Choose Services screen. Some of the services are enabled by default. 3. Scroll down through the alphabetic list of components on the Choose Services page, select "Storm", and click "Next" to continue: 3 Apache Kafka Installing Apache Storm 4 Apache Kafka Installing Apache Storm 4. On the Assign Masters page, review node assignments for Storm components. If you want to run Storm with high availability of nimbus nodes, select more than one nimbus node; the Nimbus daemon automatically starts in HA mode if you select more than one nimbus node. Modify additional node assignments if desired, and click "Next". 5. On the Assign Slaves and Clients page, choose the nodes that you want to run Storm supervisors and clients: Storm supervisors are nodes from which the actual worker processes launch to execute spout and bolt tasks. Storm clients are nodes from which you can run Storm commands (jar, list, and so on). 6. Click Next to continue. 7. Ambari displays the Customize Services page, which lists a series of services: 5 Apache Kafka Installing Apache Storm For your initial configuration you should use the default values set by Ambari.
    [Show full text]