Arl13b-Regulated Cilia Activities Are Essential for Polarized Radial Glial Scaffold Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ciliopathiesneuromuscularciliopathies Disorders Disorders Ciliopathiesciliopathies
NeuromuscularCiliopathiesNeuromuscularCiliopathies Disorders Disorders CiliopathiesCiliopathies AboutAbout EGL EGL Genet Geneticsics EGLEGL Genetics Genetics specializes specializes in ingenetic genetic diagnostic diagnostic testing, testing, with with ne nearlyarly 50 50 years years of of clinical clinical experience experience and and board-certified board-certified labor laboratoryatory directorsdirectors and and genetic genetic counselors counselors reporting reporting out out cases. cases. EGL EGL Genet Geneticsics offers offers a combineda combined 1000 1000 molecular molecular genetics, genetics, biochemical biochemical genetics,genetics, and and cytogenetics cytogenetics tests tests under under one one roof roof and and custom custom test testinging for for all all medically medically relevant relevant genes, genes, for for domestic domestic andand international international clients. clients. EquallyEqually important important to to improving improving patient patient care care through through quality quality genetic genetic testing testing is is the the contribution contribution EGL EGL Genetics Genetics makes makes back back to to thethe scientific scientific and and medical medical communities. communities. EGL EGL Genetics Genetics is is one one of of only only a afew few clinical clinical diagnostic diagnostic laboratories laboratories to to openly openly share share data data withwith the the NCBI NCBI freely freely available available public public database database ClinVar ClinVar (>35,000 (>35,000 variants variants on on >1700 >1700 genes) genes) and and is isalso also the the only only laboratory laboratory with with a a frefree oen olinnlein dea dtabtaabsaes (eE m(EVmCVlaCslas)s,s f)e, afetuatruinrgin ag vaa vraiarniatn ctl acslasisfiscifiactiaotino sne saercahrc ahn adn rde rpeoprot rrte rqeuqeuset sint tinetrefarcfaec, ew, hwichhic fha cfailcitialiteatse rsa praidp id interactiveinteractive curation curation and and reporting reporting of of variants. -
Cell Migration in the Developing Rodent Olfactory System
Cell. Mol. Life Sci. (2016) 73:2467–2490 DOI 10.1007/s00018-016-2172-7 Cellular and Molecular Life Sciences REVIEW Cell migration in the developing rodent olfactory system 1,2 1 Dhananjay Huilgol • Shubha Tole Received: 16 August 2015 / Revised: 8 February 2016 / Accepted: 1 March 2016 / Published online: 18 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The components of the nervous system are Abbreviations assembled in development by the process of cell migration. AEP Anterior entopeduncular area Although the principles of cell migration are conserved AH Anterior hypothalamic nucleus throughout the brain, different subsystems may predomi- AOB Accessory olfactory bulb nantly utilize specific migratory mechanisms, or may aAOB Anterior division, accessory olfactory bulb display unusual features during migration. Examining these pAOB Posterior division, accessory olfactory bulb subsystems offers not only the potential for insights into AON Anterior olfactory nucleus the development of the system, but may also help in aSVZ Anterior sub-ventricular zone understanding disorders arising from aberrant cell migra- BAOT Bed nucleus of accessory olfactory tract tion. The olfactory system is an ancient sensory circuit that BST Bed nucleus of stria terminalis is essential for the survival and reproduction of a species. BSTL Bed nucleus of stria terminalis, lateral The organization of this circuit displays many evolution- division arily conserved features in vertebrates, including molecular BSTM Bed nucleus of stria terminalis, medial mechanisms and complex migratory pathways. In this division review, we describe the elaborate migrations that populate BSTMa Bed nucleus of stria terminalis, medial each component of the olfactory system in rodents and division, anterior portion compare them with those described in the well-studied BSTMpl Bed nucleus of stria terminalis, medial neocortex. -
Visual Impairment in the Absence of Dystroglycan
13136 • The Journal of Neuroscience, October 21, 2009 • 29(42):13136–13146 Neurobiology of Disease Visual Impairment in the Absence of Dystroglycan Jakob S. Satz,1,2,3,4 Alisdair R. Philp,1,6 Huy Nguyen,5 Hajime Kusano,1,2,3,4 Jane Lee,1,2,3,4 Rolf Turk,1,2,3,4 Megan J. Riker,6 Jasmine Herna´ndez,6 Robert M. Weiss,4 Michael G. Anderson,2,6 Robert F. Mullins,6 Steven A. Moore,5 Edwin M. Stone,1,6 and Kevin P. Campbell1,2,3,4 1Howard Hughes Medical Institute and Departments of 2Molecular Physiology and Biophysics, 3Neurology, 4Internal Medicine, 5Pathology, and 6Ophthalmology and Visual Sciences, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242 Ocular involvement in muscular dystrophy ranges from structural defects to abnormal electroretinograms. While the mechanisms underlyingtheabnormalretinalphysiologyinpatientsarenotunderstood,itisthoughtthat␣-dystroglycanextracellularinteractionsare critical for normal visual function. Here we show that -dystroglycan anchors dystrophin and the inward rectifying K ϩ channel Kir4.1 at glial endfeet and that disruption of dystrophin and potassium channel clustering in dystroglycan mutant mice is associated with an attenuationoftheelectroretinogramb-wave.Glial-specificinactivationofdystroglycanordeletionofthecytoplasmicdomainof-dystroglycan was sufficient to attenuate the electroretinogram b-wave. Unexpectedly, deletion of the -dystroglycan cytoplasmic domain did not disrupt the laminar structure of the retina. In contrast to the role of ␣-dystroglycan extracellular interactions during early development of the CNS, -dystroglycan intracellular interactions are important for visual function but not the laminar development of the retina. Introduction and dystrobrevin (Ervasti and Campbell, 1991; Ibraghimov- Muscular dystrophies with ocular involvement are associated Beskrovnaya et al., 1992; Cohn and Campbell, 2000). -
Dynamic Changes in the Localization of Synapse Associated Proteins
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Dynamic changes in the localization of synapse associated proteins during development and differentiation of the mammalian retina Mary Heather West Greenlee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Cell Biology Commons, Molecular Biology Commons, Neuroscience and Neurobiology Commons, and the Ophthalmology Commons Recommended Citation Greenlee, Mary Heather West, "Dynamic changes in the localization of synapse associated proteins during development and differentiation of the mammalian retina " (1999). Retrospective Theses and Dissertations. 12625. https://lib.dr.iastate.edu/rtd/12625 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fijom the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fiice, ^xiule others may be from any type of conq>uter printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
ATF5 Deficiency Causes Abnormal Cortical Development
www.nature.com/scientificreports OPEN ATF5 defciency causes abnormal cortical development Mariko Umemura*, Yasuyuki Kaneko, Ryoko Tanabe & Yuji Takahashi Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5- defcient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural fexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 defciency also afected the basal processes of radial glial cells, which serve as a scafold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 defciency afects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours. Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ ATF family of basic leucine zipper transcription factors1. Our group and others have reported that ATF5 is a stress responsive transcription factor under conditions such as endoplasmic reticulum (ER) stress and oxidative stress2–4. -
Ciliopathies Gene Panel
Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases. -
Active Transport and Diffusion Barriers Restrict Joubert Syndrome-Associated ARL13B/ARL-13 to an Inv-Like Ciliary Membrane Subdomain
Active Transport and Diffusion Barriers Restrict Joubert Syndrome-Associated ARL13B/ARL-13 to an Inv-like Ciliary Membrane Subdomain Sebiha Cevik1, Anna A. W. M. Sanders1., Erwin Van Wijk2,3,4., Karsten Boldt5., Lara Clarke1, Jeroen van Reeuwijk3,6,7, Yuji Hori8, Nicola Horn5, Lisette Hetterschijt6, Anita Wdowicz1, Andrea Mullins1, Katarzyna Kida1, Oktay I. Kaplan1,9, Sylvia E. C. van Beersum3,6,7, Ka Man Wu3,6,7, Stef J. F. Letteboer3,6,7, Dorus A. Mans3,6,7, Toshiaki Katada8, Kenji Kontani8, Marius Ueffing5,10", Ronald Roepman3,6,7", Hannie Kremer2,3,4,6", Oliver E. Blacque1* 1 School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland, 2 Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands, 3 Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, 4 Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands, 5 Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tu¨bingen, Tu¨bingen, Germany, 6 Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands, 7 Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands, 8 Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan, 9 Berlin Institute for Medical Systems Biology (BIMSB) at Max-Delbru¨ck-Center for Molecular Medicine (MDC), Berlin, Germany, 10 Research Unit Protein Science, Helmholtz Zentrum Mu¨nchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany Abstract Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. -
Polycystin-1 Regulates ARHGAP35-Dependent Centrosomal Rhoa Activation and ROCK Signaling
Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling Andrew J. Streets, … , Philipp P. Prosseda, Albert C.M. Ong JCI Insight. 2020;5(16):e135385. https://doi.org/10.1172/jci.insight.135385. Research Article Genetics Nephrology Graphical abstract Find the latest version: https://jci.me/135385/pdf RESEARCH ARTICLE Polycystin-1 regulates ARHGAP35- dependent centrosomal RhoA activation and ROCK signaling Andrew J. Streets, Philipp P. Prosseda, and Albert C.M. Ong Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom. Mutations in PKD1 (encoding for polycystin-1 [PC1]) are found in 80%–85% of patients with autosomal dominant polycystic kidney disease (ADPKD). We tested the hypothesis that changes in actin dynamics result from PKD1 mutations through dysregulation of compartmentalized centrosomal RhoA signaling mediated by specific RhoGAP (ARHGAP) proteins resulting in the complex cellular cystic phenotype. Initial studies revealed that the actin cytoskeleton was highly disorganized in cystic cells derived from patients with PKD1 and was associated with an increase in total and centrosomal active RhoA and ROCK signaling. Using cilia length as a phenotypic readout for centrosomal RhoA activity, we identified ARHGAP5, -29, and -35 as essential regulators of ciliation in normal human renal tubular cells. Importantly, a specific decrease in centrosomal ARHGAP35 was observed in PKD1-null cells using a centrosome-targeted proximity ligation assay and by dual immunofluorescence labeling. Finally, the ROCK inhibitor hydroxyfasudil reduced cyst expansion in both human PKD1 3D cyst assays and an inducible Pkd1 mouse model. In summary, we report a potentially novel interaction between PC1 and ARHGAP35 in the regulation of centrosomal RhoA activation and ROCK signaling. -
Characterization of Primary Cilia and Intraflagellar Transport 20 in the Epidermis
Characterization of Primary Cilia and Intraflagellar Transport 20 in the Epidermis Steven H. Su Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Steven H. Su All Rights Reserved Abstract Characterization of Primary Cilia and Intraflagellar Transport 20 in the Epidermis Steven H. Su Mammalian skin is a dynamic organ that constantly undergoes self-renewal during homeostasis and regenerates in response to injury. Crucial for the skin’s self-renewal and regenerative capabilities is the epidermis and its stem cell populations. Here we have interrogated the role of primary cilia and Intraflagellar Transport 20 (Ift20) in epidermal development as well as during homeostasis and wound healing in postnatal, adult skin. Using a transgenic mouse model with fluorescent markers for primary cilia and basal bodies, we characterized epidermal primary cilia during embryonic development as well as in postnatal and adult skin and find that both the Interfollicular Epidermis (IFE) and hair follicles (HFs) are highly ciliated throughout development as well as in postnatal and adult skin. Leveraging this transgenic mouse, we also developed a technique for live imaging of epidermal primary cilia in ex vivo mouse embryos and discovered that epidermal primary cilia undergo ectocytosis, a ciliary mechanism previously only observed in vitro. We also generated a mouse model for targeted ablation of Ift20 in the hair follicle stem cells (HF-SCs) of adult mice. We find that loss of Ift20 in HF-SCs inhibits ciliogenesis, as expected, but strikingly it also inhibits hair regrowth. -
Ciliary Genes Arl13b, Ahi1 and Cc2d2a Differentially Modify Expression of Visual Acuity
bioRxiv preprint doi: https://doi.org/10.1101/569822; this version posted March 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Ciliary Genes arl13b, ahi1 and cc2d2a Differentially Modify Expression of Visual Acuity 2 Phenotypes but do not Enhance Retinal Degeneration due to Mutation of cep290 in Zebrafish 3 4 Short title: Retinal degeneration in cep290 mutant zebrafish 5 6 7 Emma M. Lessieur1,2,4, Ping Song1,4, Gabrielle C. Nivar1, 8 Ellen M. Piccillo1, Joseph Fogerty1, Richard Rozic3, and Brian D. Perkins1,2 9 10 1Department of Ophthalmic Research, Cole Eye Institute, 11 Cleveland Clinic, Cleveland, OH 44195 United States 12 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, 13 Case Western Reserve University, Cleveland, OH 44195 United States 14 3Department of Biomedical Engineering, Lerner Research Institute, 15 Cleveland Clinic, Cleveland, OH 44195 United States 16 17 4These authors contributed equally to this work 18 Correspondence to: 19 Brian D. Perkins, Ph.D. 20 Department of Ophthalmic Research 21 Cleveland Clinic 22 9500 Euclid Ave 23 Building i3-156 24 Cleveland, OH 44195, USA 25 (Ph) 216-444-9683 26 (Fax) 216-445-3670 27 [email protected] 28 29 1 bioRxiv preprint doi: https://doi.org/10.1101/569822; this version posted March 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Ahi1 Promotes Arl13b Ciliary Recruitment, Regulates Arl13b Stability and Is Required for Normal Cell Migration Jesúsmuñoz-Estrada1 and Russell J
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs230680. doi:10.1242/jcs.230680 RESEARCH ARTICLE Ahi1 promotes Arl13b ciliary recruitment, regulates Arl13b stability and is required for normal cell migration JesúsMuñoz-Estrada1 and Russell J. Ferland1,2,* ABSTRACT (TZ), and participates in the formation of primary cilia in epithelial Mutations in the Abelson-helper integration site 1 (AHI1) gene are cells (Hsiao et al., 2009). Recently, JBTS has been proposed to associated with neurological/neuropsychiatric disorders, and cause result from disruption of the ciliary TZ architecture, leading to the neurodevelopmental ciliopathy Joubert syndrome (JBTS). Here, defective ciliary signaling (Shi et al., 2017). we show that deletion of the transition zone (TZ) protein Ahi1 in The primary cilium, a slender microtubule-based extension mouse embryonic fibroblasts (MEFs) has a small effect on cilia (axoneme) of the cell membrane, is critical for embryonic formation. However, Ahi1 loss in these cells results in: (1) reduced development and tissue homeostasis (Goetz and Anderson, 2010). localization of the JBTS-associated protein Arl13b to the ciliary In non-dividing cells that form cilia, migration and docking of the membrane, (2) decreased sonic hedgehog signaling, (3) and an basal body (a modified mother centriole) to the apical membrane, abnormally elongated ciliary axoneme accompanied by an increase intraflagellar transport (IFT) and microtubule dynamics are required in ciliary IFT88 concentrations. While no changes in Arl13b levels are for assembly and elongation of the axoneme (Rosenbaum and detected in crude cell membrane extracts, loss of Ahi1 significantly Witman, 2002; Sorokin, 1962; Stephens, 1997). -
PKD2 Is an Essential Ion Channel Subunit in the Primary Cilium of the Renal Collecting Duct Epithelium
bioRxiv preprint doi: https://doi.org/10.1101/215814; this version posted November 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 PKD2 is an essential ion channel subunit in the primary cilium 3 of the renal collecting duct epithelium 4 5 6 Xiaowen Liu1,4, Thuy Vien2, Jingjing Duan1,4, Shu-Hsien Sheu1,4, Paul G. DeCaen2,3 and David E. 7 Clapham1,3,4 8 9 1. Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 10 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard 11 Medical School, Boston, MA 02115, USA 12 2. Northwestern University, Feinberg School of Medicine, Department of Pharmacology, 320 13 East Superior Street, Chicago, Illinois 60611 14 3. Correspondence should be addressed to P.G.D. or D.E.C. (email: 15 [email protected] or [email protected]) 16 4. Current address: Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147 17 18 Abbreviations used: 19 - Pkd1 or Pkd2 (lower case letters): when referring to polycystin genes 20 - PKD1 or PKD2 (capital letters): when referring to polycystin proteins 21 - cPkd1: a mouse expressing Pax8rtTA; TetO-cre; Pkd1fl/fl 22 - cPkd2: a mouse expressing Pax8rtTA; TetO-cre; Pkd2fl/fl 23 - Arl13B-EGFPtg: a transgenic mouse expressing multiple copies of the cilia-localized 24 Arl13B-EGFP gene 25 - pIMCD: primary distal collecting duct tubule epithelial cells isolated from mice used 26 in the study (Arl13B-EGFPtg; Arl13B-EGFPtg:cPkd1; Arl13B-EGFPtg:cPkd2) 2+ 27 - [free-Ca ]in: internal free calcium concentration (cilioplasm or cytoplasm) 28 1 bioRxiv preprint doi: https://doi.org/10.1101/215814; this version posted November 7, 2017.