Myocardial Remodeling in Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Myocardial Remodeling in Hypertension Journal of Human Hypertension (2015) 29,1–6 & 2015 Macmillan Publishers Limited All rights reserved 0950-9240/15 www.nature.com/jhh REVIEW Myocardial remodeling in hypertension W Nadruz Left ventricular (LV) hypertrophy and remodeling are frequently seen in hypertensive subjects and result from a complex interaction of several hemodynamic and non-hemodynamic variables. Although increased blood pressure is considered the major determinant of LV structural alterations, ethnicity, gender, environmental factors, such as salt intake, obesity and diabetes mellitus, as well as neurohumoral and genetic factors might influence LV mass and geometry. The conventional concept of hypertensive LV remodeling has been that hypertension leads to concentric hypertrophy, as an adaptive response to normalize wall stress, which is then followed by chamber dilation and heart failure. However, several lines of evidence have challenged this dogma. Concentric hypertrophy is not the most frequent geometric pattern and is less usually seen than eccentric hypertrophy in hypertensive subjects. In addition, data from recent studies suggested that transition from LV concentric hypertrophy to dilation and systolic dysfunction is not a common finding, especially in the absence of coronary heart disease. LV hypertrophy is also consistently associated with increased cardiovascular morbidity and mortality, raising doubts whether this phenotype is an adaptive response. Experimental evidence exists that a blunting of load-induced cardiomyocyte hypertrophy does not necessarily result in LV dysfunction or failure. Furthermore, the hypertrophic myocardium shows fibrosis, alterations in the coronary circulation and cardiomyocyte apoptosis, which may result in heart failure, myocardial ischemia and arrhythmias. Overall, this body of evidence suggests that LV hypertrophy is a complex phenotype that predicts adverse cardiovascular outcomes and may not be necessarily considered as an adaptive response to systemic hypertension. Journal of Human Hypertension (2015) 29, 1–6; doi:10.1038/jhh.2014.36; published online 8 May 2014 INTRODUCTION concentric LV remodeling (normal LV mass and increased relative 5 Cardiac remodeling is defined as alterations in size, geometry, wall thickness). shape, composition and function of the heart resulting from cardiac load or injury.1 Left ventricular (LV) remodeling is frequently seen in hypertensive subjects and has been CELLULAR AND HISTOPATHOLOGICAL FEATURES considered an adaptive response to hemodynamic overload Hypertrophic growth of cardiomyocytes is the main mechanism imposed by systemic hypertension. This compensatory response by which the heart reduces LV wall stress imposed by pressure is assumed to be explained by the Laplace law, T ¼ P Â r/2h, where overload. It involves stimulation of an intricate web of intracellular tension or stress in the LV wall (T) is directly related to LV pressure signaling cascades that activate gene expression and promote (P) and radius (r) and is inversely related to LV wall thickness (h) protein synthesis and stability, with consequent increases in (Figure 1).2 Sustained elevated blood pressure leads to increases in protein content, in the number of force-generating units LV wall stress, which is a major determinant of myocardial oxygen (sarcomeres) and in the size of individual cardiomyocytes. demand. In response to increased LV wall stress, LV wall thickens Concentric hypertrophy is characterized by an increase in the and LV mass increases, thus resulting in normalization of wall width of cardiomyocytes caused by the parallel addition of new stress and the development of a structural pattern known as sarcomeres, whereas in eccentric hypertrophy there is an increase concentric hypertrophy. Alternatively, increases in blood volume in cardiomyocyte length due to the addition of new sarcomeres in would lead to an increase in the chamber radius, resulting in series.2,6 Adult cardiomyocytes were traditionally considered to be eccentric hypertrophy. terminally differentiated cells unable to divide. However, the LV structure and mass are complex phenotypes that may be paradigm that the adult heart is a postmitotic organ has been influenced by several factors other than chronic hemodynamic challenged by reports that cardiomyocytes may be able to overload. It is extensively acknowledged that non-hemodynamic proliferate in rat hearts as well as in severely hypertrophic, post- variables, such as ethnicity, gender, neurohumoral, environmental infarcted and end-stage-failing human hearts. Thus, it has been and genetic factors, modulate the myocardial hypertrophic suggested that the increased cardiac mass in LV hypertrophy may response.3,4 Therefore, distinct cardiac structural adaptations are be a result from a combination of hypertrophy and hyperplasia of seen in hypertensive subjects. LV geometry can be described both cardiomyocytes and non-cadiomyocytic cells.1,2 based on the LV mass (hypertrophy) and the relative wall Besides cardiomyocyte hypertrophy, several alterations of the thickness. Four LV geometric patterns have been identified: cardiomyocyte and the non-cardiomyocyte components (includ- normal LV geometry (normal LV mass and lower value of ing apoptosis, fibrosis and changes in the coronary circulation) are relative wall thickness), eccentric LV hypertrophy (increased LV also seen and seem to explain the increased risk of mass and lower value of relative wall thickness), concentric LV adverse cardiovascular outcomes related to LV hypertrophy.7 hypertrophy (increased LV mass and relative wall thickness) and Cardiomyocytes exhibit increased rates of cell death, especially Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil. Correspondence: Professor W Nadruz, Departamento de Clı´nica Me´dica, Faculdade de Cieˆncias Me´dicas, Universidade Estadual de Campinas, Cidade Universita´ria ‘Zeferino Vaz’, Campinas, Sa˜o Paulo 13081-970, Brazil. E-mail: [email protected] Received 16 January 2014; revised 25 March 2014; accepted 2 April 2014; published online 8 May 2014 Heart and hypertension W Nadruz 2 hypertrophy usually have the highest stroke volume and cardiac output and the lowest systemic vascular resistance levels compared with those with other geometric patterns. In such individuals, increased volemia seems to be a major determinant of wall stress and LV hypertrophy. On the other hand, hyper- tensive subjects with concentric remodeling usually have a lower cardiac output and intravascular volume.4 Differences in LV shape are also described among the LV geometric patterns. Noticeably, higher stroke volumes have been coupled with more spherical LV chambers. Therefore, subjects with eccentric hypertrophy usually exhibit the most spherical LV cavities, whereas those with concentric remodeling generally show the most elliptic shape.4 The notion that cardiomyocytes grow in response to hemody- namic load indicates that the mechanical stimulus is transduced into a biochemical event, thus modifying gene transcription. Attractive candidates for such a transducer are the components of the focal adhesion complex, through which the cytoskeleton of a cell connects to the extracellular matrix.13 Furthermore, Figure 1. The Laplace law and how it may explain the development mechanical stress may be coupled to intracellular signals that of concentric and eccentric LV hypertrophy in response to pressure are responsible for the hypertrophic response via phospholipases, and volume overload, respectively. T, tension or stress in the LV wall; P, LV pressure; r, radius of the chamber; h, LV wall thickness. ion channels and ion exchangers or may induce the release of growth-promoting factors (for example, angiotensin II, endothelin- 1 and transforming growth factor-beta), thus providing alternative pathways of growth induction.9,13 apoptosis, which may result in reduced contractile mass and affect In addition to raised blood pressure and variation in volemic contractility.1,6 Fibroblasts proliferate and there is exaggerated status, non-hemodynamic factors have been also implicated in the accumulation of collagen type I and type III fibers within the pathogenesis of hypertensive LV remodeling. For instance, interstitium and perivascular regions. These events induce the impaired suppression of the renin–angiotensin axis or increased development of fibrosis, which predisposes to diastolic and sensitivity to angiotensin II may act as stimuli for LV hypertrophy systolic LV dysfunction, diminished coronary flow reserve and in hypertensive patients. Likewise, increased plasma renin activity ventricular arrhythmias. Furthermore, there are changes in the levels have been related to hypertensive LV hypertrophy and data coronary circulation, such as hyperplasia and hypertrophy of derived from clinical trials suggested that agents targeting the intramyocardial arteries and a relative decrease in arteriolar and renin–angiotensin system may offer beneficial effects on LV mass capillary density, which predispose to inadequate myocardial beyond blood pressure reduction.10 In contrast, the role of the perfusion.6 Conversely, experimental evidence exists that a renin–angiotensin–aldosterone system in LV geometry is more blunting of cardiomyocyte hypertrophy does not necessarily controversial. Although some lines of evidence have suggested result in dysfunction or failure, even in the presence of pressure that low-renin states are coupled with eccentric hypertrophy and overload.8 These findings
Recommended publications
  • Myocardial Stress and Hypertrophy: a Complex Interface Between Biophysics and Cardiac Remodeling
    Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling William Grossman, Walter J. Paulus J Clin Invest. 2013;123(9):3701-3703. https://doi.org/10.1172/JCI69830. Hindsight Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hypertrophy and contractile dysfunction regularly observed in patients with aortic stenosis. Stress-sensing mechanisms in cardiomyocytes and activation of cardiomyocyte death by elevated wall stress continue to intrigue cardiovascular scientists. Find the latest version: https://jci.me/69830/pdf Hindsight Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling William Grossman and Walter J. Paulus Center for Prevention of Heart and Vascular Disease, UCSF, San Francisco, California, USA. Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands. Pressure and volume overload results in concentric and eccentric hypertro- catheters (1). This allowed matching of phy of cardiac ventricular chambers with, respectively, parallel and series instantaneous LV pressure, radius, and wall replication of sarcomeres. These divergent patterns of hypertrophy were thickness throughout the cardiac cycle, related 40 years ago to disparate wall stresses in both conditions, with sys- something not possible using only imag- tolic wall stress eliciting parallel replication of sarcomeres and diastolic wall ing and measured blood pressure (4, 5).
    [Show full text]
  • Impact of Hypertension on Ventricular Remodeling in Patients with Aortic Stenosis
    Artigo Original Impacto da Hipertensão Arterial no Remodelamento Ventricular, em Pacientes com Estenose Aórtica Impact of Hypertension on Ventricular Remodeling in Patients with Aortic Stenosis João Carlos Hueb, João T. R. Vicentini, Meliza Goi Roscani, Daniéliso Fusco, Ricardo Mattos Ferreira, Silméia Garcia Zanatti, Katashi Okoshi, Beatriz B. Matsubara Hospital das Clínicas da Faculdade de Medicina de Botucatu - Unesp, Botucatu, SP - Brasil Resumo Fundamento: A hipertrofia ventricular esquerda (HVE) é comum em pacientes com hipertensão arterial sistêmica (HAS) e estenose aórtica (EAo) e, com certa frequência, encontramos associação entre estas patologias. Mas, em tal situação, não está clara a importância de cada uma na HVE. Objetivo: 1 - Avaliar em pacientes portadores de EAo, submetidos previamente a estudo ecocardiográfico, a magnitude da HVE, nos casos de EAo isolada e associada à HAS; 2 - Avaliar o padrão de remodelamento geométrico nas duas situações. Métodos: Estudo retrospectivo, observacional e transversal, incluindo 298 pacientes consecutivos, com EAo ao ecocardiograma. HVE foi considerada para massa miocárdica > 224 g em homens e > 162 g em mulheres. Os pacientes foram classificados como portadores de EAo leve (gradiente máximo < 30,0 mmHg), moderada (entre 30 e 50,0 mmHg) e grave (> 50,0 mmHg), além disso, foram separados em dois subgrupos: com e sem HAS. Resultados: Nos três níveis de lesão aórtica, a massa ventricular esquerda foi maior na EAo associada à HAS do que na EAo isolada (EAo leve: 172 ± 45 vs 223 ± 73 g, p < 0,0001; EAo moderada: 189 ± 77 vs 245 ± 81 g, p = 0,0313; EAo grave: 200 ± 62 vs 252 ± 88 g, p = 0,0372).
    [Show full text]
  • 12 - Volume Growth • Affects 80 Mio Americans Cardiac Growth • Damaged Cardiac Tissue Does Not Self Regenerate
    heart disease • primary cause of death in industrialized nations 12 - volume growth • affects 80 mio americans cardiac growth • damaged cardiac tissue does not self regenerate forms of cardiac growth • case I - athlete’s heart stress driven isotropic growth • case II - cardiac dilation strain driven eccentric growth • case III - cardiac wall thickening stress driven concentric growth 12 - volume growth - cardiac growth 1 motivation - cardiac growth 2 organ level - human heart and its characteristic microstructure cellular level - cardiomyocyte and its characteristic microstructure Figure 1. Adult ventricular cardiomyocyte. The sarcomeric actin is labeled in green and the periodically spaced t-tubule system is marked in red, giving the cell its characteristic striated appearance. Healthy cardiomyocytes have a cylindrical shape with a diameter of 10-25µm and a Figure 1. Normal healthy heart, courtesy of Chengpei Xu (left). Microstructural architecture of the heart (right). The orthogonal unit vectors f0 length of 100µm, consisting of approximately 50 sarcomere units in series making up a myofibril and 50-100 myofibrils in parallel. Cardiac and s0 designate the muscle fiber direction and the sheet plane vector in the undeformed configuration. The orthogonal vector n0 completes the disease can be attributed to structural changes in the cardiomyocyte, either through eccentric growth in dilated cardiomyopathy or through local coordinate system, where the constitutive response of the heart is typically viewed as orthotropic. concentric growth in hypertrophic cardiomyopathy. goktepe, abilez, kuhl [2010] kevin kit parker, disease biophysics group, harvard motivation - cardiac growth 3 motivation - cardiac growth 4 molecular level - sarcomere and its characteristic microstructure organ level - pathophysiology of maladaptive growth Figure 2.
    [Show full text]
  • How to Estimate Left Ventricular Hypertrophy in Hypertensive Patients
    Review 389 How to estimate left ventricular hypertrophy in hypertensive patients Dragan Lovic, Serap Erdine1, Alp Burak Çatakoğlu2 Clinic for internal disease, InterMedica; Nis-Serbia 1Department of Cardiology, Cerrahpaşa Faculty of Medicine, İstanbul University; İstanbul-Turkey 2Department of Cardiology, Liv Hospital; İstanbul-Turkey ABSTRACT Left ventricular hypertrophy (LVH) is a structural remodeling of the heart developing as a response to volume and/or pressure overload. Previous studies have shown that hypertension is not an independent factor in the development of LVH and occurrence does not depend on the length and severity of hypertension, but the role played by other comorbidities such as triglycerides, age, gender, genetics, insulin resis- tance, obesity, physical inactivity, increased salt intake and chronic stress. LVH develops through three phases: adaptive, compensatory, and pathological phase. Contractile dysfunction is reversible in the first two phases and irreversible in the third. According to the Framingham study, LVH develops in 15-20% of patients with mild arterial hypertension, and in 50% of patients with severe hypertension. The pathophysiology of LVH includes hypertrophy of cardiomyocytes, interstitial and perivascular fibrosis, coronary microangiopathy and macroangiopathy. Individuals with LVH have 2-4 times higher risk of having adverse CV events compared to patients without LVH. (Anadolu Kardiyol Derg 2014; 14: 389-95) Key words: arterial hypertension, left ventricular hypertrophy, pathophysiology, cardiovascular events Introduction increases concurrently with the increase of body size in both genders. From puberty on, the growth rate of the heart is higher Arterial hypertension is a major cause of organ damage in men than in women, implying that men and women have spe- including the heart and left ventricular hypertrophy (LVH) is a cific cardiac growth curves.
    [Show full text]
  • Recommendations on the Use of Echocardiography in Adult
    GUIDELINES & STANDARDS Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)† Thomas H. Marwick, MBBS, PhD, MPH, Thierry C. Gillebert, MD, PhD, Gerard Aurigemma, MD, Julio Chirinos, MD, PhD, Genevieve Derumeaux, MD, PhD, Maurizio Galderisi, MD, John Gottdiener, MD, Brian Haluska, PhD, RDCS, Elizabeth Ofili, MD, Patrick Segers, PhD, Roxy Senior, MD, Robyn J. Tapp, PhD, and Jose L. Zamorano, MD, Hobart, Brisbane, and Melbourne, Australia; Ghent, Belgium; Worcester, MA; Philadelphia, PA; College Park, MD; Washington, DC; Villeurbanne, France; Naples, Italy; London, United Kingdom; and Madrid, Spain Hypertension remains a major contributor to the global burden of disease. The measurement of blood pressure continues to have pitfalls related to both physiological aspects and acute variation. As the left ventricle (LV) remains one of the main target organs of hypertension, and echocardiographic measures of structure and function carry prognostic information in this setting, the development of a consensus position on the use of echocardiography in this setting is important. Recent developments in the assessment of LV hypertrophy and LV systolic and diastolic function have prompted the preparation of this document. The focus of this work is on the cardiovascular responses to hypertension rather than the diagnosis of secondary hypertension. Sections address the pathophysiology of the cardiac and vascular responses
    [Show full text]
  • Left Ventricular Remodeling and Hypertrophy in Patients with Aortic
    Edinburgh Research Explorer Left ventricular remodeling and hypertrophy in patients with aortic stenosis Citation for published version: Dweck, MR, Joshi, S, Murigu, T, Gulati, A, Alpendurada, F, Jabbour, A, Maceira, A, Roussin, I, Northridge, DB, Kilner, PJ, Cook, SA, Boon, NA, Pepper, J, Mohiaddin, RH, Newby, DE, Pennell, DJ & Prasad, SK 2012, 'Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance', Journal of Cardiovascular Magnetic Resonance, vol. 14, 50. https://doi.org/10.1186/1532-429X-14-50 Digital Object Identifier (DOI): 10.1186/1532-429X-14-50 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Cardiovascular Magnetic Resonance Publisher Rights Statement: © 2012 Dweck et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Aortic Stenosis with Abnormal Eccentric Left Ventricular Remodeling Secondary to Hypothyroidism in a Bourdeaux Mastiff
    Ciência AorticRural, stenosis Santa with Maria, abnormal v.47: eccentric 09, e20160424, left ventricular 2017 remodeling secondary to hypothyroidism http://dx.doi.org/10.1590/0103-8478cr20160424 in a Bourdeaux Mastiff. 1 ISSNe 1678-4596 CLINIC AND SURGERY Aortic stenosis with abnormal eccentric left ventricular remodeling secondary to hypothyroidism in a Bourdeaux Mastiff Guilherme Augusto Minozzo1 Simone Tostes de Oliveira Stedile2 Marlos Gonçalves Sousa2* 1Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brasil. 2Departamento de Medicina Veterinária, Universidade Federal do Paraná (UFPR), 80035-050, Curitiba, PR, Brasil. E-mail: [email protected]. *Corresponding author. ABSTRACT: This paper describes a case of congenital aortic stenosis with eccentric left ventricular hypertrophy associated with hypothyroidism in a 1-year-old Bourdeaux Mastiff dog. The dog had ascites, apathy, alopecic and erythematous skin lesions in different parts of the body. A two-dimensional echocardiogram revealed aortic valve stenosis, with poststenotic dilation in the ascending aorta. The same exam showed eccentric hypertrophy and dilation of the left ventricle during systole and diastole. Aortic stenosis usually results in concentric left ventricular hypertrophy instead of eccentric hypertrophy; and therefore, this finding was very unusual. Hypothyroidism, which is uncommon in young dogs, may be incriminated as the cause of ventricular dilation, making this report even more interesting. Because hypothyroidism
    [Show full text]
  • The Gene Expression Profiling of Concentric and Eccentric Cardiac Hypertrophy
    941 Hypertens Res Vol.29 (2006) No.12 p.941-942 Editorial Comment The Gene Expression Profiling of Concentric and Eccentric Cardiac Hypertrophy Haruhiro TOKO1), Ichiro SHIOJIMA1), and Issei KOMURO1) (Hypertens Res 2006; 29: 941–942) Key Words: concentric cardiac hypertrophy, eccentric cardiac hypertrophy, gene expression Cardiac hypertrophy in its initial phase is recognized to be an ciated with elongation of myocytes due to assembly of sarco- adaptive response to increased biomechanical stresses such as meric units predominantly in series rather than in parallel (8), pressure or volume overload, because Laplace’s law dictates suggesting that gp130-mediated signals contribute to the that increased wall stress is offset by an increase in wall thick- development of eccentric hypertrophy. In an independent ness (1). However, recent clinical studies have shown that study, it was shown that overexpression of activated MEK5 (a cardiac hypertrophy is an independent risk factor for sudden mitogen-activated protein kinase [MAPK] kinase that selec- death, arrhythmia, and myocardial infarction (2), and pro- tively upregulates extracellular receptor-kinase [ERK]5 longed exposure to pressure or volume overload leads to heart MAPK) results in eccentric hypertrophy in transgenic mice, failure through poorly understood mechanisms (3). There- and that LIF-induced elongation of cultured cardiac myocytes fore, it is important to clarify the precise molecular mecha- is attenuated by the expression of dominant-negative MEK5 nisms responsible for the development of hypertrophy and its (9), suggesting that the gp130-MEK5-ERK5 pathway pro- transition to heart failure. motes myocyte elongation and eccentric hypertrophy. These There are two morphologically distinct types of hyper- findings support a view that activation of a specific signaling trophic heart growth, concentric hypertrophy (increase in wall pathway(s) mediates the eccentric form of hypertrophic heart thickness and cardiac mass with little change in chamber vol- growth.
    [Show full text]
  • Differentiating Physiology from Pathology in Elite Athletes. Left Ventricular Hypertrophy Versus Hypertrophic Cardiomyopathy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository Kardiologia Polska 2016; 74, 8: 705–716; DOI: 10.5603/KP.a2016.0084 ISSN 0022–9032 ARTYKUŁ SPECJALNY / STATE-OF-THE-ART REVIEW Differentiating physiology from pathology in elite athletes. Left ventricular hypertrophy versus hypertrophic cardiomyopathy Hubert Krysztofiak1, 2, Paweł Petkow Dimitrow3 1Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland 2National Centre for Sports Medicine, Warsaw, Poland 32nd Department of Cardiology, Collegium Medicum Jagiellonian University, Krakow, Poland Hubert Krysztofiak, MD, PhD is the Head of the National Centre for Sports Medicine and an investigator at the Mossakowski Medical Research Centre of Polish Academy of Sciences. He is responsible for the medical care for Olympians. An important part of his activity is screening for, and management of, medical conditions that limit the ability of athletes to participate in sports training and competition or may predispose them to sudden cardiac death. He is the Chairman of the Medical Commission of the Polish Olympic Committee and the Chief Medical Officer for the Polish Olympic Team; a member of the Advisory Board of the IOC Diploma in Sports Medicine; and a member of the Sports Cardiology Section of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). He was the Chairman of the Working Group on Sports Cardiology of the Polish Cardiac Society and a Member of the Board of the Polish Society of Sports Medicine. His main area of scientific activity is cardiac adaptation to exercise in athletes and the clinical approach to cardiac pathology and problems in athletes.
    [Show full text]
  • Cardiac Hypertrophy and Heart Failure: from the Case to Review of Literature
    CASE REPORT East J Med 21(4): 191-196, 2016 Cardiac hypertrophy and heart failure: From the case to review of literature Francesco Massoni*, Lidia Ricci, Claudio Simeone, Emanuela Onofri, Serafino Ricci Departments of Anatomical Sciences, Histological, Legal Medicine, and Locomotor Apparatus, Sapienza University of Rome, Rome, Italy ABSTRACT In response to an increased workload due to physiological or pathological stimuli, the heart may undergo a process of growth with increased muscle mass called cardiac hypertrophy. It is a particular mechanism of long term compensation used by the heart to adapt permanently to a greater workload. Although, through its peculiar structural, molecular and metabolic characteristics, in early stage the hypertrophy allows to maintain an adequate cardiac function, after a variable period of time, the same characteristics promote the evolution to contractile dysfunction and heart failure. The latter represents an important cause of death and so the cardiac hypertrophy increases the cardiovascular morbidity and mortality. In this paper we report a rare case of extremely high degree of concentric cardiac hypertrophy, with a heart weight of 1050 g and longitudinal diameter of 16.5 cm, transverse diameter of 16 cm and antero-posterior diameter of 9 cm. The thickness of the left ventricle free wall was 4.2 cm, of the septum 4.3 cm and at the apex level 3.5 cm. These data, compared with those described in scientific literature, indicate the exceptional nature of our necropsy finding of a huge cardiac hypertrophy. The analysis of the pathogenetic mechanisms, which may determinate the fatal event in case of cardiac hypertrophy, shows that in the described case the death cause can be the onset of heart failure in presence of cardiomegaly.
    [Show full text]