Netflow Configuration Guide, Cisco IOS Release 15M&T

Total Page:16

File Type:pdf, Size:1020Kb

Netflow Configuration Guide, Cisco IOS Release 15M&T NetFlow Configuration Guide, Cisco IOS Release 15M&T Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http:// www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R) © 2016 Cisco Systems, Inc. All rights reserved. CONTENTS CHAPTER 1 Cisco IOS NetFlow Overview 1 Finding Feature Information 1 Information About Cisco IOS NetFlow 1 The NetFlow Application 1 NetFlow Benefits Monitoring Analysis and Planning Security and Accounting and Billing 2 NetFlow Cisco IOS Packaging Information 3 NetFlow Flows 3 NetFlow Main Cache Operation 4 NetFlow Data Capture 4 NetFlow Export Formats 4 NetFlow Operation Processing Order of NetFlow Features 5 NetFlow Preprocessing Features Filtering and Sampling 5 NetFlow Advanced Features and Services BGP Next Hop Multicast MPLS NetFlow Layer 2 6 NetFlow Postprocessing Features Aggregation Schemes and Export to Multiple Destinations 7 NetFlow MIBs 7 How to Configure Cisco IOS NetFlow 7 Configuration Examples for Cisco IOS NetFlow 8 Where to Go Next 8 Additional References 8 Glossary 10 CHAPTER 2 Getting Started with Configuring Cisco IOS NetFlow and NetFlow Data Export 13 Finding Feature Information 13 Prerequisites for Configuring NetFlow and NetFlow Data Export 14 Restrictions for Configuring NetFlow and NetFlow Data Export 14 NetFlow Data Capture 14 NetFlow Configuration Guide, Cisco IOS Release 15M&T iii Contents NetFlow Data Export 15 Information About Configuring NetFlow and NetFlow Data Export 15 NetFlow Data Capture 15 NetFlow Flows Key Fields 16 NetFlow Data Export Using the Version 9 Export Format 16 How to Configure NetFlow and NetFlow Data Export 16 Configuring NetFlow and NetFlow Data Export Using the Version 9 Export Format 16 Verifying That NetFlow Is Operational and View NetFlow Statistics 18 Verifying That NetFlow Data Export Is Operational 21 Configuration Examples for Configuring NetFlow and NetFlow Data Export 21 Example Configuring Egress NetFlow Accounting 21 Example Configuring NetFlow Subinterface Support 22 Example Configuring NetFlow Multiple Export Destinations 22 Example Configuring NetFlow and NetFlow Data Export Using the Version 9 Export Format 22 Example Configuring NetFlow for Analyzing PPPoE Session Traffic 23 Additional References 23 Feature Information for Configuring NetFlow and NetFlow Data Export 25 Glossary 27 CHAPTER 3 Configuring NetFlow and NetFlow Data Export 29 Finding Feature Information 29 Prerequisites for Configuring NetFlow and NetFlow Data Export 29 Restrictions for Configuring NetFlow and NetFlow Data Export 30 NetFlow Data Capture 31 NetFlow Data Export 32 Information About Configuring NetFlow and NetFlow Data Export 32 NetFlow Data Capture 32 NetFlow Flows Key Fields 33 NetFlow Cache Management and Data Export 33 NetFlow Export Format Versions 9 8 5 and 1 34 Overview 34 Details 35 NetFlow Export Version Formats 35 NetFlow Export Packet Header Format 36 NetFlow Configuration Guide, Cisco IOS Release 15M&T iv Contents NetFlow Flow Record and Export Format Content Information 37 NetFlow Data Export Format Selection 41 NetFlow Version 9 Data Export Format 42 NetFlow Version 8 Data Export Format 44 NetFlow Version 5 Data Export Format 45 NetFlow Version 1 Data Export Format 47 Egress NetFlow Accounting Benefits NetFlow Accounting Simplified 48 NetFlow Subinterface Support Benefits Fine-Tuning Your Data Collection 49 NetFlow Multiple Export Destinations Benefits 49 NetFlow on a Distributed VIP Interface 50 How to Configure NetFlow and NetFlow Data Export 50 Configuring NetFlow 50 Verifying that NetFlow Is Operational and Displaying NetFlow Statistics 51 Configuring NetFlow Data Export Using the Version 9 Export Format 54 Verifying that NetFlow Data Export Is Operational 57 Clearing NetFlow Statistics on the Router 58 Customizing the NetFlow Main Cache Parameters 58 NetFlow Cache Entry Management on a Routing Device 59 NetFlow Cache Size 59 Configuration Examples for Configuring NetFlow and NetFlow Data Export 62 Example Configuring Egress NetFlow Accounting 62 Example Configuring NetFlow Subinterface Support 62 NetFlow Subinterface Support for Ingress (Received) Traffic on a Subinterface 62 NetFlow SubInterface Support for Egress (Transmitted) Traffic on a Subinterface 63 Example Configuring NetFlow Multiple Export Destinations 63 Example Configuring NetFlow Version 5 Data Export 63 Example Configuring NetFlow Version 1 Data Export 64 Additional References 64 Feature Information for Configuring NetFlow and NetFlow Data Export 66 Glossary 67 CHAPTER 4 Configuring NetFlow Aggregation Caches 69 Finding Feature Information 69 Prerequisites for Configuring NetFlow Aggregation Caches 70 Restrictions for Configuring NetFlow Aggregation Caches 70 NetFlow Configuration Guide, Cisco IOS Release 15M&T v Contents NetFlow Data Export 70 Information About Configuring NetFlow Aggregation Caches 71 NetFlow Aggregation Caches 71 NetFlow Cache Aggregation Benefits 71 NetFlow Cache Aggregation Schemes 71 NetFlow Aggregation Scheme Fields 73 NetFlow AS Aggregation Scheme 75 NetFlow AS-ToS Aggregation Scheme 77 NetFlow Destination Prefix Aggregation Scheme 78 NetFlow Destination Prefix-ToS Aggregation Scheme 80 NetFlow Prefix Aggregation Scheme 82 NetFlow Prefix-Port Aggregation Scheme 84 NetFlow Prefix-ToS Aggregation Scheme 86 NetFlow Protocol Port Aggregation Scheme 88 NetFlow Protocol-Port-ToS Aggregation Scheme 90 NetFlow Source Prefix Aggregation Scheme 91 NetFlow Source Prefix-ToS Aggregation Scheme 93 NetFlow Data Export Format Versions 9 and 8 for NetFlow Aggregation Caches Overview 95 How to Configure NetFlow Aggregation Caches 95 Configuring NetFlow Aggregation Caches 95 Verifying the Aggregation Cache Configuration 99 Configuration Examples for Configuring NetFlow Aggregation Caches 101 Configuring an AS Aggregation Cache Example 101 Configuring a Destination Prefix Aggregation Cache Example 101 Configuring a Prefix Aggregation Cache Example 102 Configuring a Protocol Port Aggregation Cache Example 102 Configuring a Source Prefix Aggregation Cache Example 102 Configuring an AS-ToS Aggregation Cache Example 103 Configuring a Prefix-ToS Aggregation Cache Example 103 Configuring the Minimum Mask of a Prefix Aggregation Scheme Example 103 Configuring the Minimum Mask of a Destination Prefix Aggregation Scheme Example 104 Configuring the Minimum Mask of a Source Prefix Aggregation Scheme Example 104 Configuring NetFlow Version 9 Data Export for Aggregation Caches Example 104 Configuring NetFlow Version 8 Data Export for Aggregation Caches Example 105 NetFlow Configuration Guide, Cisco IOS Release 15M&T vi Contents Additional References 105 Feature Information for Configuring NetFlow Aggregation Caches 107 Glossary 108 CHAPTER 5 Using NetFlow Filtering or Sampling to Select the Network Traffic to Track 111 Finding Feature Information 112 Prerequisites for Using NetFlow Filtering or Sampling to Select Network Traffic to Track 112 Restrictions for Using NetFlow Filtering or Sampling to Select Network Traffic to Track 113 Information About Using NetFlow Filtering or Sampling to Select Network Traffic to
Recommended publications
  • Ngenius Collector Appliance Scalable, High-Capacity Appliance for Collection of Cisco Netflow and Other Flow Data
    l DATA SHEET l nGenius Collector Appliance Scalable, High-Capacity Appliance for Collection of Cisco NetFlow and Other Flow Data Product Overview HIGHLIGHTS Deployed at key traffic aggregation locations, nGenius® Collectors extend the reach of the nGeniusONE® Service Assurance solution and are used primarily to generate flow‑based • Measure service responsiveness across statistics (metadata) in memory for specific traffic types. This NETSCOUT data source collects the network with up to 500 Cisco IP SLA metadata on IP SLA and IPPING protocols, flow data from NetFlow routers, link‑level statistics, synthetic transaction tests and utilization data from MIB‑II routers. • Scalable collection of up to 2 million Cisco NetFlow, IPFIX, Juniper J-Flow, Huawei® Listening passively on an Ethernet wire, nGenius Collectors examine specific traffic collected NetStream and sFlow flows per minute from flow‑enabled routers and switches (e.g., Cisco® NetFlow, Juniper® J-Flow, sFlow®, ® • Captures and stores Flow datagrams for NetStream ) and from IP SLA test results to generate a variety of statistics. In addition, Collectors historical deep-dive analysis can be configured to capture datagrams from Flow‑enabled routers and analyze them via datagram capture, which allows users to perform in‑depth capture and filtering. • Collects Flow data from up to 5,000 flow‑enabled router or switch interfaces Metrics from nGenius Collectors are retrieved through a managing nGenius for Flows Server per appliance for analysis, enabling display of utilization metrics, quality of service (QoS) breakdowns, and • Supports both IPv4 and IPv6 environments application breakdowns in nGenius for Flows and other tools in the nGeniusONE Service • Purpose-built hardware and virtual Assurance Solution.
    [Show full text]
  • Cisco Systems, Inc. 2015 Annual Report
    Cisco Systems, Inc. 2015 Annual Report Annual Report 2015 Letters to Shareholders To Our Shareholders, Fiscal 2015 was a great year for Cisco. As we marked A Winning Differentiated Strategy our thirtieth anniversary year, we witnessed the inflection point in the next wave of the Internet. This next wave will Our strong financial performance and our market leadership have five to ten times the impact of the first. As fifty billion in most areas clearly show that our vision and strategy are devices come online and connect over the next few years, working. Our differentiation comes from our ability to deliver the network and Cisco have never been more relevant or integrated architectures at scale, with speed and with more strategic. In our view, it is clear that the opportunities security. These architectures combine multiple industry- ahead are even brighter than those of our past. leading technologies, services, and software with unique go-to-market models and partnerships. We bring these At Cisco, we believe much of our success has come from architectures to market in solutions that deliver business our ability to lead market transitions. More than five years outcomes to our customers. In our view, this architectural ago, we saw the impact that connecting people, processes, approach allows us to deliver value greater than the sum data, and things would have on organizations and countries. of the parts and is enabling us to pull away from the Today, across the board, our customers’ top priority is to competition and gain wallet and market share. use technology to drive growth and productivity, manage risk, and gain competitive advantage.
    [Show full text]
  • Netflow Traffic Analyzer Real-Time Network Utilization and Bandwidth Monitoring
    DATASHEET NetFlow Traffic Analyzer Real-Time Network Utilization and Bandwidth Monitoring An add-on to Network Performance Monitor (NPM), SolarWinds® NetFlow DOWNLOAD FREE TRIAL Traffic Analyzer (NTA) is a multi-vendor flow analysis tool designed to proactively reduce network downtime. NTA delivers actionable insights Fully Functional to help IT pros troubleshoot and optimize spend on bandwidth by better for 30 Days understanding the who, what, and where of traffic consumption. Solve practical operational infrastructure problems with actionable insights and save money with informed network investments. WHY CHOOSE NETFLOW TRAFFIC ANALYZER? • NTA collects and analyzes flow data from multiple vendors, including NetFlow v5 and v9, Juniper® J-Flow™, sFlow®, Huawei® NetStream™, and IPFIX. • NTA alerts you to changes in application traffic or if a device stops sending flow data. • NTA supports advanced application recognition with Cisco® NBAR2. • NTA shows pre- and post-policy CBQoS class maps, so you can optimize your CBQoS policies. • NTA can help you identify malicious or malformed traffic with port 0 monitoring. • NTA includes WLC network traffic analysis so you can see what’s using your wireless bandwidth. • NTA supplements Network Performance Monitor by helping to identify the cause of high bandwidth. Built on the Orion® Platform, NTA provides the ability to purchase and fully integrate with additional network monitoring modules (config management, WAN management, VoIP, device tracking, IP address management), as well as systems, storage, and virtualization management in a single web console. page 1 DATASHEET: NETFLOW TRAFFIC ANALYZER FEATURES New! VMware vSphere Distributed Switch (VDS) Support Comprehensive support for the VMware VDS, providing visibility within the switch fabric to your east-west VM traffic to help IT pros avoid service impacts when moving workloads.
    [Show full text]
  • Netflow Optimizer™
    NetFlow Optimizer™ Installation and Administration Guide Version 2.4.7 (Build 2.4.7.0.23) January 2017 © Copyright 2013-2017 NetFlow Logic Corporation. All rights reserved. Patents both issued and pending. Contents Overview ....................................................................................................................................................................... 3 How NetFlow Optimizer Works .................................................................................................................................. 3 How NFO Updater Works .......................................................................................................................................... 3 NetFlow Optimizer Installation Guide ......................................................................................................................... 4 Before You Install NFO ................................................................................................................................................ 4 Pre-Installation Checklist ........................................................................................................................................... 4 Minimum Requirements ............................................................................................................................................. 4 Supported Platforms .............................................................................................................................................. 4 Virtual Hardware
    [Show full text]
  • Cisco IOS Netflow Configuration Guide, Release 12.2SR
    Cisco IOS NetFlow Configuration Guide Release 12.2SR Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Flow-Tools Tutorial
    Flow-tools Tutorial SANOG 6 Bhutan Agenda • Network flows • Cisco / Juniper implementation – NetFlow • Cisco / Juniper Configuration • flow-tools programs overview and examples from Abilene and Ohio- Gigapop Network Flows • Packets or frames that have a common attribute. • Creation and expiration policy – what conditions start and stop a flow. • Counters – packets,bytes,time. • Routing information – AS, network mask, interfaces. Network Flows • Unidirectional or bidirectional. • Bidirectional flows can contain other information such as round trip time, TCP behavior. • Application flows look past the headers to classify packets by their contents. • Aggregated flows – flows of flows. Unidirectional Flow with Source/Destination IP Key % telnet 10.0.0.2 10.0.0.1 login: 10.0.0.2 Active Flows Flow Source IP Destination IP 1 10.0.0.1 10.0.0.2 2 10.0.0.2 10.0.0.1 Unidirectional Flow with Source/Destination IP Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP 1 10.0.0.1 10.0.0.2 2 10.0.0.2 10.0.0.1 Unidirectional Flow with IP, Port,Protocol Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP prot srcPort dstPort 1 10.0.0.1 10.0.0.2 TCP 32000 23 2 10.0.0.2 10.0.0.1 TCP 23 32000 3 10.0.0.1 10.0.0.2 ICMP 0 0 4 10.0.0.2 10.0.0.1 ICMP 0 0 Bidirectional Flow with IP, Port,Protocol Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP prot srcPort
    [Show full text]
  • Brocade Vyatta Network OS Data Sheet
    DATA SHEET Brocade Vyatta Network OS HIGHLIGHTS A Network Operating System for the Way Forward • Offers a proven, modern network The Brocade® Vyatta® Network OS lays the foundation for a flexible, easy- operating system that accelerates the adoption of next-generation to-use, and high-performance network services architecture capable of architectures meeting current and future network demands. The operating system was • Creates an open, programmable built from the ground up to deliver robust network functionality that can environment to enhance be deployed virtually or as an appliance, and in concert with solutions differentiation, service quality, and from a large ecosystem of vendors, to address various Software-Defined competitiveness Networking (SDN) and Network Functions Virtualization (NFV) use cases. • Supports a broad ecosystem for With the Brocade Vyatta Network OS, organizations can bridge the gap optimal customization and service between traditional and new architectures, as well as leverage existing monetization investments and maximize operational efficiencies. Moreover, they can • Simplifies and automates network compose and deploy unique, new services that will drive differentiation functions to improve time to service, increase operational efficiency, and and strengthen competitiveness. reduce costs • Delivers breakthrough performance flexibility, performance, and operational and scale to meet the needs of any A Proven, Modern Operating efficiency, helping organizations create deployment System The Brocade Vyatta Network OS new service offerings and value. Since • Provides flexible deployment options separates the control and data planes in 2012, the benefits of this operating to support a wide variety of use cases software to fit seamlessly within modern system have been proven by the Brocade SDN and NFV environments.
    [Show full text]
  • Introduction to Netflow
    Introduction to Netflow Campus Network Design & Operations Workshop These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/) Last updated 14th December 2018 Agenda • Netflow – What it is and how it works – Uses and applications • Generating and exporting flow records • Nfdump and NfSen – Architecture – Usage • Lab What is a Network Flow • A set of related packets • Packets that belong to the same transport connection. e.g. – TCP, same src IP, src port, dst IP, dst port – UDP, same src IP, src port, dst IP, dst port – Some tools consider "bidirectional flows", i.e. A->B and B->A as part of the same flow http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking) Simple flows = Packet belonging to flow X = Packet belonging to flow Y Cisco IOS Definition of a Flow • Unidirectional sequence of packets sharing: – Source IP address – Destination IP address – Source port for UDP or TCP, 0 for other protocols – Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols – IP protocol – Ingress interface (SNMP ifIndex) – IP Type of Service IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 22 B 5.6.7.8 1.2.3.4 6 (TCP) 22 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 22 B 5.6.7.8 1.2.3.4 6 (TCP) 22 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 What about packets “C” and “D”? Flow Accounting • A summary of all the packets seen in a flow (so far): – Flow identification: protocol, src/dst IP/port..
    [Show full text]
  • Conntrack, Netfilter, Netflow and NAT Under Linux
    Xurble conntrack, Netfilter, NetFlow and NAT under Linux Oliver Gorwits 9th February 2010 Milton Keynes Perl Mongers 1 “Policy Compliance” • We have legal obligations • Avoiding the courts ✔ • Avoiding the newspapers ✔ 2 (alleged) Copyright Violations Subject: File-sharing of unauthorised content owned by Twentieth Century Fox From: [email protected] Dear Oxford University: Twentieth Century Fox Film Corporation, located in Los Angeles, and its affiliated companies (collectively, 'Fox') own intellectual property rights, including exclusive rights protected under copyright laws, in many motion pictures, television programs and other audio-visual works, including the motion picture AVATAR (collectively, the 'Fox Titles'). Fox conducted an online check by scanning public networks and discovered that your Oxford University internet account was used to access and distribute an unauthorised copy of AVATAR. By distributing Fox content without Fox's permission, you infringed Fox's copyright. Here is the information Fox obtained from the online check: Timestamp of report: 07 Feb 2010 23:12:44 GMT Title details: Avatar (2009) PROPER TS XviD-MAXSPEED IP address: 163.1.xxx.yyy Port ID: 30854 Protocol used: BitTorrent - L5 Please respond to Fox and identify what steps you have taken to resolve this matter by contacting Fox at [email protected] 3 The Process • So, given: ○Timestamp with Time Zone ○IP address ○TCP port number • We need: ○User’s identity • Usually via: ○Network log-in logs, and DHCP logs 4 Linux network subsystems Kernel conntrack netfilter iptables pietroizzo 5 Network Address/Port Translation O’Reilly 6 State Tracking User Firewall Internet 1 A ✔ 2 B pre-NAT post-NAT • Traditional loggers run two packet captures and correlate the timestamps.
    [Show full text]
  • Cisco IOS Netflow Command Reference Full Book
    Cisco IOS NetFlow Command Reference July 2011 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Ipv6-Security Monitoring
    Security Monitoring ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 22 July 2014 1 Managing and Monitoring IPv6 Networks p SNMP Monitoring p IPv6-Capable SNMP Management Tools p NetFlow Analysis p Syslog p Keeping accurate time p Intrusion Detection p Managing the Security Configuration 2 Using SNMP for Managing IPv6 Networks 3 What is SNMP? p SNMP – Simple Network Management Protocol p Industry standard, hundreds of tools exist to exploit it p Present on any decent network equipment p Query/response based: GET / SET p Monitoring generally uses GET p Object Identifiers (OIDs) p Keys to identify each piece of data p Concept of MIB (Management Information Base) p Defines a collection of OIDs What is SNMP? p Typical queries n Bytes In/Out on an interface, errors n CPU load n Uptime n Temperature or other vendor specific OIDs p For hosts (servers or workstations) n Disk space n Installed software n Running processes n ... p Windows and UNIX have SNMP agents What is SNMP? p UDP protocol, port 161 p Different versions n v1 (1988) – RFC1155, RFC1156, RFC1157 p Original specification n v2 – RFC1901 ... RFC1908 + RFC2578 p Extends v1, new data types, better retrieval methods (GETBULK) p Used is version v2c (simple security model) n v3 – RFC3411 ... RFC3418 (w/security) p Typically we use SNMPv2 (v2c) SNMP roles p Terminology: n Manager (the monitoring station) n Agent (running on the equipment/server) How does it work? p Basic commands n GET (manager → agent) p Query for a value n GET-NEXT (manager → agent) p Get next value (e.g.
    [Show full text]
  • White Paper Netflow Generation Security Value Proposition
    WHITE PAPER Leveraging NetFlow Generation for Maximum Security Value Overview This kind of sparse traffic record is enough to establish trends for network and application performance, but it’s a non-starter for Cisco introduced NetFlow in 1996 as a way to monitor packets security analytics. Advanced persistent threats (APTs) can operate as they enter and exit networking device interfaces. The aim is low and slow on the network, moving laterally and communicating to gain insight and resolve congestion. Typical information in a with command and control sites over long periods of time (days, NetFlow record reveals traffic source and destination, as well months or longer). The key to spotting anomalous traffic is looking as protocol or application, time stamps, and number of packets. for hard-to-spot patterns over the complete network activity Although NetFlow was initially not on a standards track, it has picture. Naturally, looking at a fraction of packet records severely been superseded by the Internet Protocol Flow Information hampers the breadth and accuracy of the analysis. eXport (IPFIX), which is based on the NetFlow Version 9 implementation, and is on the IETF standards track with RFC 5101, Here are the drawbacks of generating NetFlow records using RFC 5102. networking gear: As organizations refocus network security efforts on insider 1. NetFlow generation can degrade router and switch threats and detection of compromise, NetFlow provides rich and performance important contextual information about the traffic, augmenting 2. To manage the impact on performance, networking devices analysis in order to determine where compromise has occurred. may give sampled NetFlow or just drop packets This takes NetFlow out of the traditional realm of use for 3.
    [Show full text]