Binary Quadratic Forms, Genus Theory, and Primes of the Form P = X2 + Ny2

Total Page:16

File Type:pdf, Size:1020Kb

Binary Quadratic Forms, Genus Theory, and Primes of the Form P = X2 + Ny2 Binary Quadratic Forms, Genus Theory, and Primes of the Form p = x2 + ny2 Josh Kaplan July 28, 2014 Contents 1 Introduction 1 2 Quadratic Reciprocity 2 3 Binary Quadratic Forms 5 4 Elementary Genus Theory 11 1 Introduction In this paper, we will develop the theory of binary quadratic forms and elemen- tary genus theory, which together give an interesting and surprisingly powerful elementary technique in algebraic number theory. This is all motivated by a problem in number theory that dates back at least to Fermat: for a given posi- tive integer n, characterizing all the primes which can be written p = x2 + ny2 for some integers x; y. Euler studied the problem extensively, and was able to solve it for n = 1; 2; 3; 4, giving the first rigorous proofs of the following four theorems of Fermat: p = x2 + y2 for some x; y 2 Z () p = 2 or p ≡ 1 mod 4; p = x2 + 2y2 for some x; y 2 Z () p = 2 or p ≡ 1; 3 mod 8; p = x2 + 3y2 for some x; y 2 Z () p = 3 or p ≡ 1 mod 3; p = x2 + 4y2 for some x; y 2 Z () p ≡ 1 mod 4: For n > 4, however, Euler was unsuccessful in giving a proof. He did manage conjectures, though, for many values of n, such as: p = x2 + 6y2 for some x; y 2 Z () p ≡ 1; 7 mod 24: With the techniques we will develop, these beautiful and, particularly for n = 6, otherwise difficult results follow from easy computations (as do similar results 1 for n = 5; 7; 9; 10; 12; 13, and over 50 other values of n). As we will see near the end of the paper, the techniques are not enough for us to characterize primes of the form p = x2 + ny2 for arbitrary n, but what they are able to achieve is remarkable in its own right. This paper will assume knowledge of basic field theory and group theory. 2 Quadratic Reciprocity In order to characterize primes of the p = x2 + ny2 by their congruences, we first need to prove the law of quadratic reciprocity. This law will allow us to easily determine when a number is a square in a finite field (remember that for prime p, Fp denotes the finite field Z=pZ). Just how crucial this ability is to our project will not become clear until the next section, but it is a beautiful and important theorem that has many uses outside of the problem we are focusing on and is worth proving for its own sake. To give our proof, we first need the following theorem. F∗ Theorem 2.1. Let p be an odd prime. Then an element x of p is a square if and only if x(p−1)=2 = 1. Proof. From Fermat's Little Theorem, we have: F∗ p−1 8a 2 p; a = 1: p−1 F∗ So the p − 1 roots of a − 1 are the distinct elements of p. This means that there are (p − 1)=2 distinct roots of a(p−1)=2 − 1 and of a(p−1)=2 + 1. If there F∗ 2 (p−1)=2 p−1 exists y in p such that y = x, then x = y = 1, so all squares in F∗ (p−1)=2 F∗ F∗ p are roots of a − 1. Since p is cyclic, there exists g in p such that F∗ 2 p−2 F∗ p = f1; g; g ; :::; g g, so there are at least (p − 1)=2 distinct squares in p. The theorem follows. F∗ Definition 2.2. Let p be an odd prime, and let x 2 p. The Legendre symbol x (p−1)=2 of x, denoted by p , is the integer x . Note that the Legendre symbol is frequently given the following alternative Z F∗ definition (in rather than p): 8 1; if [x] 2 F∗2; x 6≡ 0 mod p x < p = −1; if [x] 62 F∗2 p p : 0; if x ≡ 0 mod p: From Theorem 2.1, it is clear that for x 6≡ 0 mod p, this definition is equivalent to our own. A few properties of the Legendre symbol also follow immediately a b ab from our definition. Obviously, we have p p = p . Also, it is clear that −1 (p−1)=2 p = (−1) = 1 if and only if p ≡ 1 mod 4. 2 The following useful lemma is often referred to as Gauss's Lemma. It will allow us to prove the law of quadratic reciprocity, but it also will give us a 2 general formula for p . For the rest of this section, S will denote the subset p−1 F∗ F∗ f1; :::; 2 g of p, where p is an odd prime (note that p is the disjoint union F∗ of S and −S). Also, for any s in S, we will define es : p ! {±1g so that for F∗ all a in p, as = es(a)sa for some sa in S. F∗ a Q Lemma 2.3. Let p be an odd prime. Then for any a in p, p = s2S es(a): Proof. Clearly s 7! sa is a bijection from S onto itself, so we can use as = es(a)sa to get the following: ! ! ! ! (p−1)=2 Y Y Y Y Y a = es(a) sa = es(a) s : s2S s2S s2S s2S s2S Therefore a Y = a(p−1)=2 = e (a): p s s2S a v Note that this means p = (−1) where v is the number of times as falls in −S rather than S. And now, as promised, we can derive the following: 2 Proposition 2.4. p = 1 if and only if p ≡ 1; 7 mod 8 p−1 2 n(p) Proof. Since es(2) = 1 if and only if 2s ≤ 2 , we get p = (−1) , where p−1 p−1 n(p) is the number of integers s such that 4 < s ≤ 2 . Clearly p can be written in the form 4k ± 1, and we see n(p) = k. Then if p ≡ ±1 mod 8, k is even, and if p ≡ ±5 mod 8, k is odd, so the result is immediate. And we are also ready now to prove the major result of this section. For odd n, define 0; n ≡ 1 mod 4; E(n) = 1; n ≡ 3 mod 4: Theorem 2.5 (Law of Quadratic Reciprocity). Let l and p be two distinct odd l p E(p)E(l) primes. Then p = l (−1) . Proof. First, note the following trigonometric fact, which we will not prove here (although the proof is elementary): for any positive, odd integer m, (m−1)=2 sin mx Y 2πj = (−4)(m−1)=2 sin2 x − sin2 : sin x m j=1 3 F∗ F∗ Let S = f1; :::; (p − 1)=2g ⊆ p;T = f1; :::; (l − 1)=2g ⊆ l . Since ls = es(l)sl, of course, 2π 2π sin ls = e (l) sin s : p s p l So from Gauss's Lemma, we have: l Y Y 2πls 2πsl = e (l) = sin = sin : p s p p s2S s2S Using the fact that s 7! sl is a bijection, and the trigonometric fact we noted at the beginning of the proof, we get the following: l Y 2πls 2πs Y Y 2πs 2πt = sin = sin = (−4)(l−1)=2 sin2 − sin2 p p p p l s2S s2S t2T Y 2πs 2πt = (−4)(l−1)(p−1)=4 sin2 − sin2 : p l s2S;t2T If we permute l and p, the same argument gives us p Y 2πt 2πs = (−4)(l−1)(p−1)=4 sin2 − sin2 : l l p s2S;t2T Therefore l Y 2πt 2πs p = (−4)(l−1)(p−1)=4 − sin2 − sin2 = (−1)(p−1)(l−1)=4 p l p l s2S;t2T p = (−1)E(p)E(l) : l The importance of this result for characterizing primes of the form p = x2 + ny2 will soon become clear. For now, just note that the law of quadratic reciprocity, when combined with the multiplicative property of Legendre sym- bols, gives us the remarkable ability to determine whether any given element of F∗ p is a square without having to find its square root. We will give a few exam- ples here of Legendre symbol calculations before returning to our main project in the next section. Example 2.6. 137 307 33 3 11 137 137 2 5 = = = = = 307 137 137 137 137 3 11 3 11 2 11 = 3 5 2 1 = 3 5 = −1 ∗ 1 = −1: 4 89 509 64 2 8 8 Example 2.7. 509 = 89 = 89 = 89 = 1, since (±1) = 1. 3 Binary Quadratic Forms At the end of this section, we will be able to use the theory of reduced forms to characterize primes of the form p = x2 + ny2 for n = 1; 2; 3; 4; 7. This theory is elementary but quite powerful, and to develop it, we first must define some concepts which will serve as the foundation for the rest of our discussion. Definition 3.1. A binary quadratic form (hereafter just quadratic form) is a function in two variables f(x; y) = ax2 + bxy + cy2. Our discussion will be limited to integral quadratic forms (i.e. a; b; c 2 Z). We say a quadratic form f(x; y) is primitive if a; b and c are relatively prime. Definition 3.2. An integer m is represented by quadratic form f if there exist x; y in Z such that f(x; y) = m.
Recommended publications
  • MASTER COURSE: Quaternion Algebras and Quadratic Forms Towards Shimura Curves
    MASTER COURSE: Quaternion algebras and Quadratic forms towards Shimura curves Prof. Montserrat Alsina Universitat Polit`ecnicade Catalunya - BarcelonaTech EPSEM Manresa September 2013 ii Contents 1 Introduction to quaternion algebras 1 1.1 Basics on quaternion algebras . 1 1.2 Main known results . 4 1.3 Reduced trace and norm . 6 1.4 Small ramified algebras... 10 1.5 Quaternion orders . 13 1.6 Special basis for orders in quaternion algebras . 16 1.7 More on Eichler orders . 18 1.8 Eichler orders in non-ramified and small ramified Q-algebras . 21 2 Introduction to Fuchsian groups 23 2.1 Linear fractional transformations . 23 2.2 Classification of homographies . 24 2.3 The non ramified case . 28 2.4 Groups of quaternion transformations . 29 3 Introduction to Shimura curves 31 3.1 Quaternion fuchsian groups . 31 3.2 The Shimura curves X(D; N) ......................... 33 4 Hyperbolic fundamental domains . 37 4.1 Groups of quaternion transformations and the Shimura curves X(D; N) . 37 4.2 Transformations, embeddings and forms . 40 4.2.1 Elliptic points of X(D; N)....................... 43 4.3 Local conditions at infinity . 48 iii iv CONTENTS 4.3.1 Principal homotheties of Γ(D; N) for D > 1 . 48 4.3.2 Construction of a fundamental domain at infinity . 49 4.4 Principal symmetries of Γ(D; N)........................ 52 4.5 Construction of fundamental domains (D > 1) . 54 4.5.1 General comments . 54 4.5.2 Fundamental domain for X(6; 1) . 55 4.5.3 Fundamental domain for X(10; 1) . 57 4.5.4 Fundamental domain for X(15; 1) .
    [Show full text]
  • On the Linear Transformations of a Quadratic Form Into Itself*
    ON THE LINEAR TRANSFORMATIONS OF A QUADRATIC FORM INTO ITSELF* BY PERCEY F. SMITH The problem of the determination f of all linear transformations possessing an invariant quadratic form, is well known to be classic. It enjoyed the atten- tion of Euler, Cayley and Hermite, and reached a certain stage of com- pleteness in the memoirs of Frobenius,| Voss,§ Lindemann|| and LoEWY.^f The investigations of Cayley and Hermite were confined to the general trans- formation, Erobenius then determined all proper transformations, and finally the problem was completely solved by Lindemann and Loewy, and simplified by Voss. The present paper attacks the problem from an altogether different point, the fundamental idea being that of building up any such transformation from simple elements. The primary transformation is taken to be central reflection in the quadratic locus defined by setting the given form equal to zero. This transformation is otherwise called in three dimensions, point-plane reflection,— point and plane being pole and polar plane with respect to the fundamental quadric. In this way, every linear transformation of the desired form is found to be a product of central reflections. The maximum number necessary for the most general case is the number of variables. Voss, in the first memoir cited, proved this theorem for the general transformation, assuming the latter given by the equations of Cayley. In the present paper, however, the theorem is derived synthetically, and from this the analytic form of the equations of trans- formation is deduced. * Presented to the Society December 29, 1903. Received for publication, July 2, 1P04.
    [Show full text]
  • Quadratic Forms, Lattices, and Ideal Classes
    Quadratic forms, lattices, and ideal classes Katherine E. Stange March 1, 2021 1 Introduction These notes are meant to be a self-contained, modern, simple and concise treat- ment of the very classical correspondence between quadratic forms and ideal classes. In my personal mental landscape, this correspondence is most naturally mediated by the study of complex lattices. I think taking this perspective breaks the equivalence between forms and ideal classes into discrete steps each of which is satisfyingly inevitable. These notes follow no particular treatment from the literature. But it may perhaps be more accurate to say that they follow all of them, because I am repeating a story so well-worn as to be pervasive in modern number theory, and nowdays absorbed osmotically. These notes require a familiarity with the basic number theory of quadratic fields, including the ring of integers, ideal class group, and discriminant. I leave out some details that can easily be verified by the reader. A much fuller treatment can be found in Cox's book Primes of the form x2 + ny2. 2 Moduli of lattices We introduce the upper half plane and show that, under the quotient by a natural SL(2; Z) action, it can be interpreted as the moduli space of complex lattices. The upper half plane is defined as the `upper' half of the complex plane, namely h = fx + iy : y > 0g ⊆ C: If τ 2 h, we interpret it as a complex lattice Λτ := Z+τZ ⊆ C. Two complex lattices Λ and Λ0 are said to be homothetic if one is obtained from the other by scaling by a complex number (geometrically, rotation and dilation).
    [Show full text]
  • Classification of Quadratic Surfaces
    Classification of Quadratic Surfaces Pauline Rüegg-Reymond June 14, 2012 Part I Classification of Quadratic Surfaces 1 Context We are studying the surface formed by unshearable inextensible helices at equilibrium with a given reference state. A helix on this surface is given by its strains u ∈ R3. The strains of the reference state helix are denoted by ˆu. The strain-energy density of a helix given by u is the quadratic function 1 W (u − ˆu) = (u − ˆu) · K (u − ˆu) (1) 2 where K ∈ R3×3 is assumed to be of the form K1 0 K13 K = 0 K2 K23 K13 K23 K3 with K1 6 K2. A helical rod also has stresses m ∈ R3 related to strains u through balance laws, which are equivalent to m = µ1u + µ2e3 (2) for some scalars µ1 and µ2 and e3 = (0, 0, 1), and constitutive relation m = K (u − ˆu) . (3) Every helix u at equilibrium, with reference state uˆ, is such that there is some scalars µ1, µ2 with µ1u + µ2e3 = K (u − ˆu) µ1u1 = K1 (u1 − uˆ1) + K13 (u3 − uˆ3) (4) ⇔ µ1u2 = K2 (u2 − uˆ2) + K23 (u3 − uˆ3) µ1u3 + µ2 = K13 (u1 − uˆ1) + K23 (u1 − uˆ1) + K3 (u3 − uˆ3) Assuming u1 and u2 are not zero at the same time, we can rewrite this surface (K2 − K1) u1u2 + K23u1u3 − K13u2u3 − (K2uˆ2 + K23uˆ3) u1 + (K1uˆ1 + K13uˆ3) u2 = 0. (5) 1 Since this is a quadratic surface, we will study further their properties. But before going to general cases, let us observe that the u3 axis is included in (5) for any values of ˆu and K components.
    [Show full text]
  • Binary Quadratic Forms and the Ideal Class Group
    Binary Quadratic Forms and the Ideal Class Group Seth Viren Neel August 6, 2012 1 Introduction We investigate the genus theory of Binary Quadratic Forms. Genus theory is a classification of all the ideals of quadratic fields k = Q(√m). Gauss showed that if we define an equivalence relation on the fractional ideals of a number field k via the principal ideals of k,anddenotethesetofequivalenceclassesbyH+(k)thatthis is a finite abelian group under multiplication of ideals called the ideal class group. The connection with knot theory is that this is analogous to the classification of the homology classes of the homology group by linking numbers. We develop the genus theory from the more classical standpoint of quadratic forms. After introducing the basic definitions and equivalence relations between binary quadratic forms, we introduce Lagrange’s theory of reduced forms, and then the classification of forms into genus. Along the way we give an alternative proof of the descent step of Fermat’s theorem on primes that are the sum of two squares, and solutions to the related problems of which primes can be written as x2 + ny2 for several values of n. Finally we connect the ideal class group with the group of equivalence classes of binary quadratic forms, under a suitable composition law. For d<0, the ideal class 1 2 BINARY QUADRATIC FORMS group of Q(√d)isisomorphictotheclassgroupofintegralbinaryquadraticforms of discriminant d. 2 Binary Quadratic Forms 2.1 Definitions and Discriminant An integral quadratic form in 2 variables, is a function f(x, y)=ax2 + bxy + cy2, where a, b, c Z.Aquadraticformissaidtobeprimitive if a, b, c are relatively ∈ prime.
    [Show full text]
  • QUADRATIC FORMS and DEFINITE MATRICES 1.1. Definition of A
    QUADRATIC FORMS AND DEFINITE MATRICES 1. DEFINITION AND CLASSIFICATION OF QUADRATIC FORMS 1.1. Definition of a quadratic form. Let A denote an n x n symmetric matrix with real entries and let x denote an n x 1 column vector. Then Q = x’Ax is said to be a quadratic form. Note that a11 ··· a1n . x1 Q = x´Ax =(x1...xn) . xn an1 ··· ann P a1ixi . =(x1,x2, ··· ,xn) . P anixi 2 (1) = a11x1 + a12x1x2 + ... + a1nx1xn 2 + a21x2x1 + a22x2 + ... + a2nx2xn + ... + ... + ... 2 + an1xnx1 + an2xnx2 + ... + annxn = Pi ≤ j aij xi xj For example, consider the matrix 12 A = 21 and the vector x. Q is given by 0 12x1 Q = x Ax =[x1 x2] 21 x2 x1 =[x1 +2x2 2 x1 + x2 ] x2 2 2 = x1 +2x1 x2 +2x1 x2 + x2 2 2 = x1 +4x1 x2 + x2 1.2. Classification of the quadratic form Q = x0Ax: A quadratic form is said to be: a: negative definite: Q<0 when x =06 b: negative semidefinite: Q ≤ 0 for all x and Q =0for some x =06 c: positive definite: Q>0 when x =06 d: positive semidefinite: Q ≥ 0 for all x and Q = 0 for some x =06 e: indefinite: Q>0 for some x and Q<0 for some other x Date: September 14, 2004. 1 2 QUADRATIC FORMS AND DEFINITE MATRICES Consider as an example the 3x3 diagonal matrix D below and a general 3 element vector x. 100 D = 020 004 The general quadratic form is given by 100 x1 0 Q = x Ax =[x1 x2 x3] 020 x2 004 x3 x1 =[x 2 x 4 x ] x2 1 2 3 x3 2 2 2 = x1 +2x2 +4x3 Note that for any real vector x =06 , that Q will be positive, because the square of any number is positive, the coefficients of the squared terms are positive and the sum of positive numbers is always positive.
    [Show full text]
  • Symmetric Matrices and Quadratic Forms Quadratic Form
    Symmetric Matrices and Quadratic Forms Quadratic form • Suppose 풙 is a column vector in ℝ푛, and 퐴 is a symmetric 푛 × 푛 matrix. • The term 풙푇퐴풙 is called a quadratic form. • The result of the quadratic form is a scalar. (1 × 푛)(푛 × 푛)(푛 × 1) • The quadratic form is also called a quadratic function 푄 풙 = 풙푇퐴풙. • The quadratic function’s input is the vector 푥 and the output is a scalar. 2 Quadratic form • Suppose 푥 is a vector in ℝ3, the quadratic form is: 푎11 푎12 푎13 푥1 푇 • 푄 풙 = 풙 퐴풙 = 푥1 푥2 푥3 푎21 푎22 푎23 푥2 푎31 푎32 푎33 푥3 2 2 2 • 푄 풙 = 푎11푥1 + 푎22푥2 + 푎33푥3 + ⋯ 푎12 + 푎21 푥1푥2 + 푎13 + 푎31 푥1푥3 + 푎23 + 푎32 푥2푥3 • Since 퐴 is symmetric 푎푖푗 = 푎푗푖, so: 2 2 2 • 푄 풙 = 푎11푥1 + 푎22푥2 + 푎33푥3 + 2푎12푥1푥2 + 2푎13푥1푥3 + 2푎23푥2푥3 3 Quadratic form • Example: find the quadratic polynomial for the following symmetric matrices: 1 −1 0 1 0 퐴 = , 퐵 = −1 2 1 0 2 0 1 −1 푇 1 0 푥1 2 2 • 푄 풙 = 풙 퐴풙 = 푥1 푥2 = 푥1 + 2푥2 0 2 푥2 1 −1 0 푥1 푇 2 2 2 • 푄 풙 = 풙 퐵풙 = 푥1 푥2 푥3 −1 2 1 푥2 = 푥1 + 2푥2 − 푥3 − 0 1 −1 푥3 2푥1푥2 + 2푥2푥3 4 Motivation for quadratic forms • Example: Consider the function 2 2 푄 푥 = 8푥1 − 4푥1푥2 + 5푥2 Determine whether Q(0,0) is the global minimum. • Solution we can rewrite following equation as quadratic form 8 −2 푄 푥 = 푥푇퐴푥 푤ℎ푒푟푒 퐴 = −2 5 The matrix A is symmetric by construction.
    [Show full text]
  • Quadratic Forms ¨
    MATH 355 Supplemental Notes Quadratic Forms Quadratic Forms Each of 2 x2 ?2x 7, 3x18 x11, and 0 ´ ` ´ ⇡ is a polynomial in the single variable x. But polynomials can involve more than one variable. For instance, 1 ?5x8 x x4 x3x and 3x2 2x x 7x2 1 ´ 3 1 2 ` 1 2 1 ` 1 2 ` 2 are polynomials in the two variables x1, x2; products between powers of variables in terms are permissible, but all exponents in such powers must be nonnegative integers to fit the classification polynomial. The degrees of the terms of 1 ?5x8 x x4 x3x 1 ´ 3 1 2 ` 1 2 are 8, 5 and 4, respectively. When all terms in a polynomial are of the same degree k, we call that polynomial a k-form. Thus, 3x2 2x x 7x2 1 ` 1 2 ` 2 is a 2-form (also known as a quadratic form) in two variables, while the dot product of a constant vector a and a vector x Rn of unknowns P a1 x1 »a2fi »x2fi a x a x a x a x “ . “ 1 1 ` 2 2 `¨¨¨` n n ¨ — . ffi ¨ — . ffi — ffi — ffi —a ffi —x ffi — nffi — nffi – fl – fl is a 1-form, or linear form in the n variables found in x. The quadratic form in variables x1, x2 T 2 2 x1 ab2 x1 ax1 bx1x2 cx2 { Ax, x , ` ` “ «x2ff «b 2 c ff«x2ff “ x y { for ab2 x1 A { and x . “ «b 2 c ff “ «x2ff { Similarly, a quadratic form in variables x1, x2, x3 like 2x2 3x x x2 4x x 5x x can be written as Ax, x , 1 ´ 1 2 ´ 2 ` 1 3 ` 2 3 x y where 2 1.52 x ´ 1 A 1.5 12.5 and x x .
    [Show full text]
  • Appendices A. Quadratic Reciprocity Via Gauss Sums
    1 Appendices We collect some results that might be covered in a first course in algebraic number theory. A. Quadratic Reciprocity Via Gauss Sums A1. Introduction In this appendix, p is an odd prime unless otherwise specified. A quadratic equation 2 modulo p looks like ax + bx + c =0inFp. Multiplying by 4a, we have 2 2ax + b ≡ b2 − 4ac mod p Thus in studying quadratic equations mod p, it suffices to consider equations of the form x2 ≡ a mod p. If p|a we have the uninteresting equation x2 ≡ 0, hence x ≡ 0, mod p. Thus assume that p does not divide a. A2. Definition The Legendre symbol a χ(a)= p is given by 1ifa(p−1)/2 ≡ 1modp χ(a)= −1ifa(p−1)/2 ≡−1modp. If b = a(p−1)/2 then b2 = ap−1 ≡ 1modp,sob ≡±1modp and χ is well-defined. Thus χ(a) ≡ a(p−1)/2 mod p. A3. Theorem a The Legendre symbol ( p ) is 1 if and only if a is a quadratic residue (from now on abbre- viated QR) mod p. Proof.Ifa ≡ x2 mod p then a(p−1)/2 ≡ xp−1 ≡ 1modp. (Note that if p divides x then p divides a, a contradiction.) Conversely, suppose a(p−1)/2 ≡ 1modp.Ifg is a primitive root mod p, then a ≡ gr mod p for some r. Therefore a(p−1)/2 ≡ gr(p−1)/2 ≡ 1modp, so p − 1 divides r(p − 1)/2, hence r/2 is an integer. But then (gr/2)2 = gr ≡ a mod p, and a isaQRmodp.
    [Show full text]
  • Quadratic Form - Wikipedia, the Free Encyclopedia
    Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form Quadratic form From Wikipedia, the free encyclopedia In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric), differential topology (intersection forms of four-manifolds), and Lie theory (the Killing form). Contents 1 Introduction 2 History 3 Real quadratic forms 4 Definitions 4.1 Quadratic spaces 4.2 Further definitions 5 Equivalence of forms 6 Geometric meaning 7 Integral quadratic forms 7.1 Historical use 7.2 Universal quadratic forms 8 See also 9 Notes 10 References 11 External links Introduction Quadratic forms are homogeneous quadratic polynomials in n variables. In the cases of one, two, and three variables they are called unary, binary, and ternary and have the following explicit form: where a,…,f are the coefficients.[1] Note that quadratic functions, such as ax2 + bx + c in the one variable case, are not quadratic forms, as they are typically not homogeneous (unless b and c are both 0). The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the 1 of 8 27/03/2013 12:41 Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra, analytic geometry, and in the majority of applications of quadratic forms, the coefficients are real or complex numbers.
    [Show full text]
  • Math 154. Class Groups for Imaginary Quadratic Fields
    Math 154. Class groups for imaginary quadratic fields Homework 6 introduces the notion of class group of a Dedekind domain; for a number field K we speak of the \class group" of K when we really mean that of OK . An important theorem later in the course for rings of integers of number fields is that their class group is finite; the size is then called the class number of the number field. In general it is a non-trivial problem to determine the class number of a number field, let alone the structure of its class group. However, in the special case of imaginary quadratic fields there is a very explicit algorithm that determines the class group. The main point is that if K is an imaginary quadratic field with discriminant D < 0 and we choose an orientation of the Z-module OK (or more concretely, we choose a square root of D in OK ) then this choice gives rise to a natural bijection between the class group of K and 2 2 the set SD of SL2(Z)-equivalence classes of positive-definite binary quadratic forms q(x; y) = ax + bxy + cy over Z with discriminant 4ac − b2 equal to −D. Gauss developed \reduction theory" for binary (2-variable) and ternary (3-variable) quadratic forms over Z, and via this theory he proved that the set of such forms q with 1 ≤ a ≤ c and jbj ≤ a (and b ≥ 0 if either a = c or jbj = a) is a set of representatives for the equivalence classes in SD.
    [Show full text]
  • Integral Binary Quadratic Forms
    INTEGRAL BINARY QUADRATIC FORMS UTAH SUMMER REU JUNE JUNE 2 2 An integral binary quadratic form is a p olynomial ax bxy cy where a b and 2 2 c are integers One of the simplest quadratic forms that comes to mind is x y A classical problem in numb er theory is to describ e which integers are sums of two squares More generally one can ask what are integral values of any quadratic form The aim of this workshop is to intro duce binary quadratic forms following a b o ok The Sensual Quadratic Form by Conway and then go on to establish some deep prop erties such as the Gauss group law and a connection with continued fractions More precisely we intend to cover the following topics Integral values In his b o ok Conway develops a metho d to visualize values of a quadratic binary form by intro ducing certain top ographic ob jects rivers lakes etc Gauss law In Gauss dened a comp osition law of binary quadratic forms 2 of a xed discriminant D b ac In a mo dern language this group law corresp onds to multiplication of ideals in the quadratic eld of discriminant D We shall take an approach to this topic from Manjul Bhargavas Ph D thesis where the Gauss law is dened using integer cub es Reduction theory Two quadratic forms can dier only by a change of co ordi nates Such quadratic forms are called equivalent We shall show that there are only nitely many equivalence classes of binary quadratic forms of a xed discriminant D If D the equivalence classes can b e interpreted as cycles of purely p erio dic continued fractions This interpretation
    [Show full text]