Igneous Rocks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primordial Hydrogen-Helium Degassing, an Overlooked Major Energy Source for Internal Terrestrial Processes
HAIT Journal of Science and Engineering B, Volume 2, Issues 1-2, pp. 125-167 Copyright C 2005 Holon Academic Institute of Technology ° Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes 1, 2 Arie Gilat ∗ and Alexander Vol 1Geological Survey of Israel (ret.), 8 Yehoash St., Jerusalem 93152, Israel 2Enlightment Ltd. 33 David Pinsky St., Haifa 34454, Israel ∗Corresponding author: [email protected] Received 20 July 2004, revised 3 February 2005, accepted 16 February 2005 Abstract The currently accepted theories concerning terrestrial processes are lacking in accounting for a source of internal energy which: (a) are quickly focused, e.g. earthquakes and volcanic eruptions; (b) are of very high density; (c) provide very high velocities of energy re- lease; (d) have very high density of the energy transport and relatively small losses during transportation over long distances; (e) are quasi- constantly released and practically limitless. This energy release is always accompanied by H- and He-degassing. Solid solutions of H and He, and compounds of He with H, O, Si and metals were discovered in laboratory experiments of ultra-high PT-conditions; He-S, He-Cl, He- C, He-N structures can be deduced from their atomic structure and compositions of natural He-reach gases. Ultra-high PT-conditions ex- ist in the Earth’s interior; hence it seems most likely that some “exotic” compounds are present in the Earth’s core and mantle. During Earth’s accretion, primordial hydrogen and helium were trapped and stored in the planet interior as H- and He- solutions and compounds, stable only under ultrahigh PT-conditions that were dis- covered in recent experiments. -
The Bearhead Rhyolite, Jemez Volcanic Field, NM
Journal of Volcanology and Geothermal Research 107 32001) 241±264 www.elsevier.com/locate/jvolgeores Effusive eruptions from a large silicic magma chamber: the Bearhead Rhyolite, Jemez volcanic ®eld, NM Leigh Justet*, Terry L. Spell Department of Geosciences, University of Nevada, Las Vegas, NV, 89154-4010, USA Received 23 February 2000; accepted 6 November 2000 Abstract Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and ¯ows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic ®eld, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems. 40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff 3the Main Group) were erupted during an ,540 ka interval between 7.06 and 6.52 Ma. These rocks de®ne a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ,11±9 and ,8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ,6.1 and ,1.5 Ma. The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes 3,200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. -
Modelling the Petrogenesis of High Rb/Sr Silicic Magmas
( "heroical Geology, 92 ( 199 [ ) 107-114 107 Elsevier Science Publishers B.V., Amsterdam Modelling the petrogenesis of high Rb/Sr silicic magmas A.N. Halliday a, j.p. Davidson ~"", W. Hildreth b and P. Holden ~"~ ~' D~7~arll~tepll qt Geo/o~ica/ Sciences, The University q/,llichi~an, Inn. lrhor, UI 4S I ()~- I 0~ 3, (.S'I " ('S. Geological SI,'rVE')', MSglO, 345 )diddlefiehl Road, Menlo t'ark. (;,1 94025. ( ,S\-I " D~7~artment o/Earlh and Space Sciences, ~ )zivetwitr q/('alih;rnta. Los ..t n£,eh'~. (' I 90024, ~ ',S'. I (Received February 22, 1990: revised and accepted November 7, 1991)) ABSTRACT Halliday, A.N., Davidson, J.P., Hildreth, W. and Holden, P., 1991. Modelling the petrogenesis o1 high Rh/Sr silicic mag- mas. In: A. Peccerillo (Guest-Editor), Geochemistry of Granitoid Rocks. Chem. Geol., 92: 107-114. Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb/Sr > 2,0(t0. In contrast, granite batholiths are commonly comprised of rocks with Rb/Sr < l 0 and only rarely > 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefi)re commonly in error be- cause of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations ( ~< 1 ppm ) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fiactional crystalli- zalion involving substantial volumes of cumulates. -
Arxiv:1906.03473V2 [Physics.Geo-Ph] 30 Dec 2019 Double the Carbon Solubility in fluids Co-Existing with Sediments Subducted Along Cool Geotherms
Devolatilization of Subducting Slabs, Part II: Volatile Fluxes and Storage Meng Tian,1, ∗ Richard F. Katz,1 David W. Rees Jones,1, 2, 3 and Dave A. May1 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. 2Department of Earth Sciences, Bullard Laboratories, University of Cambridge, Madingley Road, Cambridge, CB3 0EZ, UK. 3School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK Subduction is a crucial part of the long-term water and carbon cycling between Earth's exo- sphere and interior. However, there is broad disagreement over how much water and carbon is liberated from subducting slabs to the mantle wedge and transported to island-arc volcanoes. In the companion paper Part I, we parameterize the metamorphic reactions involving H2O and CO2 for representative subducting lithologies. On this basis, a two-dimensional reactive transport model is constructed in this Part II. We assess the various controlling factors of CO2 and H2O release from subducting slabs. Model results show that up-slab fluid flow directions produce a flux peak of CO2 and H2O at subarc depths. Moreover, infiltration of H2O-rich fluids sourced from hydrated slab mantle enhances decarbonation or carbonation at lithological interfaces, increases slab surface fluxes, and redistributes CO2 from basalt and gabbro layers to the overlying sedimentary layer. As a result, removal of the cap sediments (by diapirism or off-scraping) leads to elevated slab surface CO2 and H2O fluxes. The modelled subduction efficiency (the percentage of initially subducted volatiles retained until ∼200 km deep) of H2O and CO2 is increased by open-system effects due to fractionation within the interior of lithological layers. -
Constraining Magma Chamber and Recharge Conditions from Surface Uplift at Three Sisters Volcanic Center in the Oregon Cascades
CONSTRAINING MAGMA CHAMBER AND RECHARGE CONDITIONS FROM SURFACE UPLIFT AT THREE SISTERS VOLCANIC CENTER IN THE OREGON CASCADES by CATHERINE O’HARA A THESIS Presented to the Department of Earth Sciences and the Robert D. Clark Honors College in partial fulfillment of the requirements for the degree of Bachelor of Science MAY 2021 An Abstract of the Thesis of Catherine O’Hara for the degree of Bachelor of Arts Science in the Department of Earth Sciences to be taken June 2021 Title: Constraining Magma Chamber and Recharge Conditions from Surface Uplift at Three Sisters Volcanic Center in the Oregon Cascades Approved: Meredith Townsend, PhD Primary Thesis Advisor An episode of ongoing uplift in the Three Sisters volcanic center in the Oregon Cascades was discovered in 2001 from InSAR observations. The center of uplift is ~6 km west of the summit of South Sister, and the spatial pattern is consistent with a spheroidal source of inflation. The combination of InSAR and continuous GPS data since 2001 indicate a gradual onset of uplift beginning around 1996, reaching a peak of ~3-4 cm/yr between ~1998- 2004, and declining since then to a current rate of ~0.5 cm/yr (Riddick and Schmidt, 2011) . This pattern of initially rapid uplift followed by an exponential decay has been observed at several other volcanoes, such as Yellowstone, Long Valley, and Laguna del Maule (Le Mével et al., 2015), but it is unclear whether the pattern of uplift is due to magma recharge that varies with time and/or viscoelastic effects. I present a model for surface deformation due to a spherical magma chamber in a viscoelastic crust subject to recharge, cooling, crystallization, and volatile exsolution, and combine this model with InSAR and GPS data to test the recharge rates and magma chamber conditions that can best explain the variation in the uplift rates at Three Sisters. -
Geology of the Northern Part of the Southeast Three Sisters
AN ABSTRACT OF THE THESIS OF Karl C. Wozniak for the degree of Master of Science the Department cf Geology presented on February 8, 1982 Title: Geology of the Northern Part of the Southeast Three Sisters Quadrangle, Oregon Redacted for Privacy Abstract approved: E. M. Taylorc--_, The northern part of the Southeast Three Sisters quadrangle strad- dles the crest of the central High Cascades of Oregon. The area is covered by Pleistocene and Holocene volcanic and volcaniclastic rocks that were extruded from a number of composite cones, shield volcanoes, and cinder cones. The principal eruptive centers include Sphinx Butte, The Wife, The Husband, and South Sister volcanoes. Sphinx Butte, The Wife, and The Husband are typical High Cascade shield and composite vol- canoes whose compositions are limited to basalt and basaltic andesite. South Sister is a complex composite volcano composed of a diverse assem- blage of rocks. In contrast with earlier studies, the present investi- gation finds that South Sister is not a simple accumulation of andesite and dacite lavas; nor does the eruptive sequence display obvious evolu- tionary trends or late stage divergence to basalt and rhyolite. Rather, the field relations indicate that magmas of diverse composition have been extruded from South Sister vents throughout the lifespan of this volcano. The compositional variation at South Sister is. atypical of the Oregon High Cascade platform. This variation, however, represents part of a continued pattern of late Pliocene and Pleistocene magmatic diver- sity in a local region that includes Middle Sister, South Sister, and Broken Top volcanoes. Regional and local geologic constraints combined with chemical and petrographic criteria indicate that a local subcrustal process probably produced the magmas extruded fromSouth Sister, whereas a regional subcrustal process probably producedthe magmas extruded from Sphinx Butte, The Wife, and The Husband. -
A Tale of Three Sisters: Reconstructing the Holocene Glacial History and Paleoclimate Record at Three Sisters Volcanoes, Oregon, United States
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2005 A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States Shaun Andrew Marcott Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Marcott, Shaun Andrew, "A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States" (2005). Dissertations and Theses. Paper 3386. https://doi.org/10.15760/etd.5275 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Shaun Andrew Marcott for the Master of Science in Geology were presented August II, 2005, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: (Z}) Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: MIchael L. Cummings, Chair Department of Geology ( ABSTRACT An abstract of the thesis of Shaun Andrew Marcott for the Master of Science in Geology presented August II, 2005. Title: A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States. At least four glacial stands occurred since 6.5 ka B.P. based on moraines located on the eastern flanks of the Three Sisters Volcanoes and the northern flanks of Broken Top Mountain in the Central Oregon Cascades. -
The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand?
The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand? Shun-ichiro Karato, David Bercovici, Garrett Leahy, Guillaume Richard and Zhicheng Jing Yale University, Department of Geology and Geophysics, New Haven, CT 06520 Materials circulation in Earth’s mantle will be modified if partial melting occurs in the transition zone. Melting in the transition zone is plausible if a significant amount of incompatible components is present in Earth’s mantle. We review the experimental data on melting and melt density and conclude that melting is likely under a broad range of conditions, although conditions for dense melt are more limited. Current geochemical models of Earth suggest the presence of relatively dense incompatible components such as K2O and we conclude that a dense melt is likely formed when the fraction of water is small. Models have been developed to understand the structure of a melt layer and the circulation of melt and vola- tiles. The model suggests a relatively thin melt-rich layer that can be entrained by downwelling current to maintain “steady-state” structure. If deep mantle melting occurs with a small melt fraction, highly incompatible elements including hydro- gen, helium and argon are sequestered without much effect on more compatible elements. This provides a natural explanation for many paradoxes including (i) the apparent discrepancy between whole mantle convection suggested from geophysical observations and the presence of long-lived large reservoirs suggested by geochemical observations, (ii) the helium/heat flow paradox and (iii) the argon paradox. Geophysical observations are reviewed including electrical conductivity and anomalies in seismic wave velocities to test the model and some future direc- tions to refine the model are discussed. -
End of Chapter Question Answers Chapter 4 Review Questions 1
End of Chapter Question Answers Chapter 4 Review Questions 1. Describe the three processes that are responsible for the formation of magma. Answer: Magmas form from melting within the Earth. There are three types of melting: decompression melting, where magmas form when hot rock from deep in the mantle rises to shallower depths without undergoing cooling (the decrease in pressure facilitates the melting process); flux melting, where melting occurs due to the addition of volatiles such as CO2 and H2O; and heat transfer melting, where melting results from the transfer of heat from a hotter material to a cooler one. 2. Why are there so many different compositions of magma? Does partial melting produce magma with the same composition as the magma source from which it was derived? Answer: Magmas are formed from many different chemical constituents. Partial melting of rock yields magma that is more felsic (silicic) than the magma source because a higher proportion of chemicals needed to form felsic minerals diffuse into the melt at lower temperatures. Magma may incorporate chemicals dissolved from the solid rock through which it rises or from blocks of rock that fall into the magma. This process is called assimilation. Finally, fractional crystallization can modify magma composition as minerals crystallize out of a melt during the cooling process, causing the residual liquid to become progressively more felsic. 3. Why does magma rise from depth to the surface of the Earth? Answer: Magma rises toward the surface of the Earth because it is less dense than solid rock and buoyant relative to its surroundings. -
Redalyc.Geology of the Selene Perlite Deposit in the Northern Sierra
Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 [email protected] Sociedad Geológica Mexicana, A.C. México Hinojosa-Prieto, Héctor Roberto; Vidal-Solano, Jesús Roberto; Kibler, Karl W.; Hinojosa- García, Héctor Jesús Geology of the Selene perlite deposit in the northern Sierra Madre Occidental, northeastern Sonora, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 68, núm. 1, 2016, pp. 1-35 Sociedad Geológica Mexicana, A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=94344822004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative The Selene perlite deposit Sonora, Mexico 1 Boletín de la Sociedad Geológica Mexicana Volumen 68, núm. 1, 2016, p. ###-### D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geology of the Selene perlite deposit in the northern Sierra Madre Occidental, northeastern Sonora, Mexico Héctor Roberto Hinojosa-Prieto1,*, Jesús Roberto Vidal-Solano2, Karl W. Kibler3, Héctor Jesús Hinojosa-García4 1 Universität zu Köln, Institut für Geologie und Mineralogie, Zülpicher Str. 49a, 50674 Köln, Germany. 2 Departamento de Geología, Universidad de Sonora 83000 Hermosillo, Sonora, México. 3 Prewitt and Associates, Inc. 2105 Donley Drive, Suite 400 Austin, Texas, 78758 USA. 4 Science, Math & Agriculture Division, Arizona Western College, Yuma, Arizona 85366 USA. * [email protected] Abstract The Selene perlite ore deposit of northeastern Sonora, Mexico, lies at the southern edge of an extensive (85 × 35 km) assemblage of Early Oligocene–Miocene volcanic rocks. -
Contrasting Processes in Silicic Magma Chambers: Evidence from Very Large Volume Ignimbrites
Geol. Mag. 142 (6), 2005, pp. 669–681. c 2005 Cambridge University Press 669 doi:10.1017/S0016756805001445 Printed in the United Kingdom Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites ERIC H. CHRISTIANSEN* Department of Geological Sciences, Brigham Young University, Provo, Utah, 84602, USA (Received 15 November 2004; accepted 6 October 2005) Abstract – Very large volume (>1000 km3 of magma) crystal-rich dacitic ignimbrites that lack pronounced evidence of fractional crystallization or vertical zonation erupt in some continental magmatic arcs (e.g. the Lund Tuff of the Great Basin and the Fish Canyon Tuff of Colorado in western USA). Apparently, their magma chambers were only modestly heterogeneous and not systematically zoned from top to bottom. These ignimbrites have 40 to 50 % phenocrysts set in a high- silica rhyolite glass. Mineral assemblages and mineral compositions suggest pre-eruption temperatures were 730 to 820 ◦C and water and oxygen fugacities were relatively high. We have speculated that these very large volume ignimbrites are unzoned because crystallization and convection in slab- shaped magma chambers inhibited separation of crystals from liquids and resulted in a chamber filled with compositionally heterogeneous magma that lacked systematic chemical zonation or strong fractionation. However, many other very large volume silicic ignimbrites are strongly fractionated and may be vertically zoned (e.g. tuffs related to the Yellowstone hotspot). These rhyolitic tuffs typically have few phenocrysts, anhydrous mineral assemblages, low oxygen fugacities, crystallization temperatures of 830 to 1050 ◦C, and a strong imprint of fractional crystallization. Yetthese Yellowstone- type rhyolites are derived from chambers 40 to 70 km across which have sill-like shapes (depth/diameter ratios much less than 1). -
06EAS458-7 Melting
Why the Earth Melts EAS 458 Volcanology Lecture 7 How to Melt a Rock? . Raise the temperature . Heat production: radioactive heating, friction, impact heating . Heat conduction or advection . May occur in the crust, particularly where high-T magma intrudes low solidus country rock, otherwise, conduction is not efficient . Decompression . If the adiabatic gradient and the solidus intersect, rising rock will melt. This is the most important melting mechanism. Therefore, in a certain sense, volcanoes are like clouds. Lower the melting point . Just as salt lowers the freezing point of water, addition of some substances ( a flux) to rock can lower its melting point. Water is the most effective and most likely flux . This is very likely important in subduction zones 1 . Volcanism occurs at: . Divergent plate boundaries . Convergent plate boundaries . More rarely in plate interiors Decompression Melting . Decompression of rising mantle accounts for most volcanism on Earth, in particular, volcanism at divergent plate boundaries and in intraplate settings. With the help of thermodynamics, we can readily understand why this melting occurs. 2 Fundamental Variables . T: temperature . always absolute temperature, or Kelvins, in thermodynamics . P: pressure . force per unit area; SI unit is the Pascal (P) = 1 Newton/m2 = 1 kg-m/s2; in geology, we use MPa (106 Pa) or GPa (109 Pa). 1 atm ≈ 1 bar = 0.1 MPa. In the mantle pressure increases at a rate of ~ 1 GPa for each 35 km depth. V: volume Fundamental Variables . U: Energy . SI unit is the Joule . Q: Heat: a form of energy . W: Work: a form of energy dW = -PdV .