Thiol Dioxygenases: an Investigation Into the Mechanisms Of

Total Page:16

File Type:pdf, Size:1020Kb

Thiol Dioxygenases: an Investigation Into the Mechanisms Of THIOL DIOXYGENASES: AN INVESTIGATION INTO THE MECHANISMS OF CYSTEINE DIOXYGENASE AND 3-MERCAPTOPROPIONIC ACID DIOXYGENASE by JOSHUA CROWELL Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON December 2015 Copyright © by Joshua Crowell 2015 All Rights Reserved ii Acknowledgements I would like to thank Dr. Brad S. Pierce for your guidance over the past five years. Your patience and professionalism is deserving of my upmost respect and I will forever appreciate this as an example of how to treat the people I work with. I would like to thank my committee members Dr. Heo and Dr. Jonhson-Winters for their direction and advice. I also would like to thank all my lab mates, Wei, Bishnu, Andra, Priyanka, Eleanor, Sinjinee, Phil, and Mike. It has been a pleasure working with all of you. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. Lastly, I would like to thank my family. Mom and Dad, thank you for the encouragement you have shown my whole life. To my wife, Laura, thank you for your patience and support. Sawyer, Canaan, and Emmett, thank you for making me forget about work every day when I get home. I love you and most certainly couldn’t have done this without any of you. Most importantly, I want to thank God for this amazing opportunity. October 13, 2015 iii Abstract THIOL DIOXYGENASES: AN INVESTIGATION INTO THE MECHANISMS OF CYSTEINE DIOXYGENASE AND 3-MERCAPTOPROPIONIC ACID DIOXYGENASE Joshua Crowell, PhD The University of Texas at Arlington, 2015 Supervising Professor: Brad Pierce Thiol dioxygenase (TDO) enzymes catalyze the molecular oxygen-dependent oxidation of sulfur containing amino acid derivatives. The loss of the ability to regulate thiols has been linked to a number of neurological diseases. Two TDO enzymes, a mammalian cysteine dioxygenase (CDO) and a bacterial 3-mercaptopropionic acid dioxygenase, are examined by probing the various effects on the steady-state kinetic parameters kcat and kcat/KM. Both of these enzymes show a similar deviation from the iconic 2-His-1-carboxylate facial triad active site motif that dominates the mononuclear non-heme iron oxidase/oxygenase class of enzymes. However, CDO shows an unusual covalently cross-linked Cys-Tyr pair within 3.3 Å of the active site that is not present in 3- mercaptopropionic acid dioxygenase (MDO). In this work, second-sphere interactions of CDO are probed by observing perturbations to steady-state parameters in the presence of selected active site variants. In addition, the relative timing of chemical and non- chemical steps in both CDO and MDO are investigated by a series of solvent kinetic isotope effects and viscosity studies. These experiments reveal a proton dependent intermediate gates coupling efficiency in CDO. Substrate-enzyme interactions for MDO with three substrates (cysteine (cys), cysteamine (cyst), and 3-mercaptopropionic acid iv (3mpa)) are investigated by observing steady-state kinetic parameters as a function of pH. Complementary X-band EPR studies were performed using nitric oxide as a surrogate for O2-binding. As with most non-heme mononuclear iron enzymes, obligate- ordered addition of substrate prior to NO is observed. Two distinct substrate-bound conformations were observed in enzyme-substrate-NO samples prepared with either cysteine or cysteamine, suggesting heterogeneous binding of these substrates within the active site. Kinetic and EPR results are consistent with 3mpa being the preferred substrate for this enzyme. v Table of Contents Acknowledgements ............................................................................................................. iii Abstract .............................................................................................................................. iv List of Illustrations ............................................................................................................... x List of Tables ...................................................................................................................... xii List of Schemes ................................................................................................................. xiii Chapter 1 Introduction to Mononuclear Non-Heme Iron Enzymes ..................................... 1 Enzymes Containing the 2-His 1-Carboxylate Facial Triad ............................................ 2 α-Ketogluterate-Dependent Enzymes ........................................................................ 4 Rieske Dioxygenases ................................................................................................. 6 Catechol Cleaving Dioxygenases ............................................................................... 8 Extradiol dioxygenases .......................................................................................... 9 Intradiol dioxygenase ........................................................................................... 11 Pterin-Dependent Hydroxylases ............................................................................... 12 Other Enzymes ......................................................................................................... 15 ACCO ................................................................................................................... 15 Isopenicillin N synthase ....................................................................................... 16 The 3-His Facial Triad .................................................................................................. 18 Cysteine Dioxygenase .............................................................................................. 19 3-Mercaptopropionic Acid Dioxygenase ................................................................... 27 Chapter 2 Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe-site influence O2-coupling efficiency in mouse cysteine dioxygenase ........................................................................................................ 28 Introduction ................................................................................................................... 28 Materials and Methods ................................................................................................. 34 vi Purification ................................................................................................................ 34 Conversion of as-isolated CDO (AI-CDO) to fully modified CDO (- CDO)......................................................................................................................... 35 HPLC CDO Activity Assay ........................................................................................ 35 Oxygen Electrode ..................................................................................................... 36 pH profile results ....................................................................................................... 37 Analysis of kinetic data ............................................................................................. 37 Spectroscopy ............................................................................................................ 37 Computational Methods............................................................................................ 39 Results .......................................................................................................................... 41 Purification of CDO enzyme forms and selected variants ........................................ 41 Influence of the C93-Y157 pair and substrate-interactions on enzymatic coupling .................................................................................................................... 43 Cyanide binding and EPR spectroscopy of substrate-bound AI- , -, and C93A FeIII-CDO ........................................................................................................ 50 QM/MM computational models of the (CN/Cys)-bound FeIII-CDO active site ............................................................................................................................ 62 Discussion .................................................................................................................... 69 Chapter 3 Oxidative uncoupling in cysteine dioxygenase is gated by a proton-sensitive intermediate ............................................................................................ 73 Introduction ................................................................................................................... 73 Materials and Methods ................................................................................................. 76 Purification ................................................................................................................ 76 Enzyme assays ........................................................................................................ 77 Solvent Isotope Effects ............................................................................................. 78 vii Viscosity studies ....................................................................................................... 78 Data Analysis ............................................................................................................ 79 Results
Recommended publications
  • Boards' Fodder
    boards’ fodder Cosmeceuticals Contributed by Elisabeth Hurliman, MD, PhD; Jennifer Hayes, MD; Hilary Reich MD; and Sarah Schram, MD. INGREDIENT FUNCTION MECHANISM ASSOCIATIONS/SIDE EFFECTS Vitamin A/ Antioxidant (reduces free Affects gene transcription Comedolysis epidermal thickening, dermal Derivatives (retinal, radicals, lowers concentration differentiation and growth of regeneration, pigment lightening retinol, retinoic of matrix metalloproteinases cells in the skin acid, provitamin reduces collagen degradation) Side effects: Irritation, erythema, desquamation A, asthaxanthin, Normalizes follicular Elisabeth Hurliman, lutein) epithelial differentiation and keratinization MD, PhD, is a PGY-4 dermatology resident Vitamin C (L Secondary endogenous Ascorbic acid: necessary L-ascorbic acid + alpha-tocopherol (vitamin E)= ascorbic acid, antioxidant in skin cofactor for prolylhydroxylase UVA and UVB protection at University of tetrahexyldecyl and lysyl hydroxylase Minnesota department ascorbate) Lightens pigment Zinc, resveratrol, L-ergothioneine and tyrosine add of dermatology. (affects melanogenesis) L-ascorbic acid: scavenges to vitamin C bioavailability free oxygen radicals, Protects Vitamin E from oxidation stimulates collagen synthesis Improves skin texture and hydration May interrupt melanogenesis by interacting with copper ions Vitamin E/ Primary endogenous antioxidant Prevents lipid peroxidation; Alpha tocopherol is the most physiologically Tocopherols, in skin scavenges free oxygen active isomer Jennifer Hayes, MD, Tocotrienols
    [Show full text]
  • Bioinorganic Chemistry of Nickel
    inorganics Editorial Bioinorganic Chemistry of Nickel Michael J. Maroney 1,* and Stefano Ciurli 2,* 1 Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, 240 Thatcher Rd. Life Sciences, Laboratory Rm N373, Amherst, MA 01003, USA 2 Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy * Correspondence: [email protected] (M.J.M.); [email protected] (S.C.) Received: 11 October 2019; Accepted: 11 October 2019; Published: 30 October 2019 Following the discovery of the first specific and essential role of nickel in biology in 1975 (the dinuclear active site of the enzyme urease) [1], nickel has become a major player in bioinorganic chemistry,particularly in microorganisms, having impacts on both environmental settings and human pathologies. At least nine classes of enzymes are now known to require nickel in their active sites, including catalysis of redox [(Ni,Fe) hydrogenases, carbon monoxide dehydrogenase, methyl coenzyme M reductase, acetyl coenzyme A synthase, superoxide dismutase] and nonredox (glyoxalase I, acireductone dioxygenase, lactate isomerase, urease) chemistries. In addition, the dark side of nickel has been illuminated in regard to its participation in microbial pathogenesis, cancer, and immune responses. Knowledge gleaned from the investigations of inorganic chemists into the coordination and redox chemistry of this element have boosted the understanding of these biological roles of nickel in each context. In this issue, eleven contributions, including four original research articles and seven critical reviews, will update the reader on the broad spectrum of the role of nickel in biology.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas.
    [Show full text]
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
    RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products.
    [Show full text]
  • Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship, Research, and Creative Work at Bryn Mawr College | Bryn Mawr College... Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Chemistry Faculty Research and Scholarship Chemistry 2018 Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast William Paul Malachowski Bryn Mawr College, [email protected] Arpita Mondal Peggy Scherle Alexander J. Muller Let us know how access to this document benefits ouy . Follow this and additional works at: https://repository.brynmawr.edu/chem_pubs Part of the Chemistry Commons Custom Citation George C. Prendergast, William J. Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller. 2018. "Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer." International Review of Cell and Molecular Biology 336: 175-203. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. https://repository.brynmawr.edu/chem_pubs/25 For more information, please contact [email protected]. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast, William, Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller International Review of Cell and Molecular Biology 336: 175-203. http://doi.org/10.1016/bs.ircmb.2017.07.004 ABSTRACT The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase-1 (IDO1) has attracted enormous attention in driving cancer immunosuppression, neovascularization, and metastasis. IDO1 suppresses local CD8+ T effector cells and natural killer cells and induces CD4+ T regulatory cells (iTreg) and myeloid-derived suppressor cells (MDSC). The structurally distinct enzyme tryptophan dioxygenase (TDO) also has been implicated recently in immune escape and metastatic progression.
    [Show full text]
  • The Different Catalytic Roles of the Metal Binding Ligands in Human 4- Hydroxyphenylpyruvate Dioxygenase
    Citation for published version: Huang, C-W, Liu, H-C, Shen, C-P, Chen, Y-T, Lee, S-J, Lloyd, MD & Lee, H-J 2016, 'The different catalytic roles of the metal- binding ligands in human 4-hydroxyphenylpyruvate dioxygenase', Biochemical Journal, vol. 473, no. 9, pp. 1179-1189. https://doi.org/10.1042/BCJ20160146 DOI: 10.1042/BCJ20160146 Publication date: 2016 Document Version Peer reviewed version Link to publication Publisher Rights Unspecified University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 BIOCHEMICAL JOURNAL ACCEPTED MANUSCRIPT The different catalytic roles of the metal binding ligands in human 4- hydroxyphenylpyruvate dioxygenase Chih‐Wei Huang, Hsiu‐Chen Liu, Chia‐Pei Shen, Yi‐Tong Chen, Sung‐Jai Lee, Matthew D. Lloyd, and Hwei‐Jen Lee 4‐Hydroxylphenylpyruvate dioxygenase (HPPD) is a non‐haem iron(II)‐dependent oxygenase that catalyzes the conversion of 4‐hydroxylphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2‐His‐1‐Glu facial triad coordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10‐fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies.
    [Show full text]
  • Horizon Therapeutics Public Annual Report 2020
    Horizon Therapeutics Public Annual Report 2020 Form 10-K (NASDAQ:HZNP) Published: February 26th, 2020 PDF generated by stocklight.com octb inte UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark One) ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2019 or ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission File Number 001-35238 HORIZON THERAPEUTICS PUBLIC LIMITED COMPANY (Exact name of Registrant as specified in its charter) Ireland Not Applicable (State or other jurisdiction of (I.R.S. Employer incorporation or organization) Identification No.) Connaught House, 1st Floor 1 Burlington Road, Dublin 4, D04 C5Y6, Ireland Not Applicable (Address of principal executive offices) (Zip Code) 011 353 1 772 2100 (Registrant’s telephone number, including area code) Securities registered pursuant to Section 12(b) of the Act: Title of Each Class Trading Symbol Name of Each Exchange on Which Registered Ordinary shares, nominal value $0.0001 per share HZNP The Nasdaq Global Select Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ☒ No ☐. Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes ☐ No ☒. Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • Muscle Regeneration Controlled by a Designated DNA Dioxygenase
    Wang et al. Cell Death and Disease (2021) 12:535 https://doi.org/10.1038/s41419-021-03817-2 Cell Death & Disease ARTICLE Open Access Muscle regeneration controlled by a designated DNA dioxygenase Hongye Wang1, Yile Huang2,MingYu3,YangYu1, Sheng Li4, Huating Wang2,5,HaoSun2,5,BingLi 3, Guoliang Xu6,7 andPingHu4,8,9 Abstract Tet dioxygenases are responsible for the active DNA demethylation. The functions of Tet proteins in muscle regeneration have not been well characterized. Here we find that Tet2, but not Tet1 and Tet3, is specifically required for muscle regeneration in vivo. Loss of Tet2 leads to severe muscle regeneration defects. Further analysis indicates that Tet2 regulates myoblast differentiation and fusion. Tet2 activates transcription of the key differentiation modulator Myogenin (MyoG) by actively demethylating its enhancer region. Re-expressing of MyoG in Tet2 KO myoblasts rescues the differentiation and fusion defects. Further mechanistic analysis reveals that Tet2 enhances MyoD binding by demethylating the flanking CpG sites of E boxes to facilitate the recruitment of active histone modifications and increase chromatin accessibility and activate its transcription. These findings shed new lights on DNA methylation and pioneer transcription factor activity regulation. Introduction Ten-Eleven Translocation (Tet) family of DNA dioxy- 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Skeletal muscles can regenerate due to the existence of genases catalyze the active DNA demethylation and play muscle stem cells (MuSCs)1,2. The normally quiescent critical roles in embryonic development, neural regen- MuSCs are activated after muscle injury and further dif- eration, oncogenesis, aging, and many other important – ferentiate to support muscle regeneration3,4.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Primechoice Accord Formulary, January 2019 I 2018
    January 2019 PrimeChoice Accord Formulary Please consider talking to your doctor about prescribing preferred medications, which may help reduce your out-of-pocket costs. This list may help guide you and your doctor in selecting an appropriate medication for you. The drug list, also known as a formulary, is regularly updated. You can view the most up-to-date list, or the specialty drug list, at MyPrime.com. Contents Therapeutic Class Drug List Introduction ...................................................................... I Anti-Infective Agents ....................................................... 1 Coverage considerations ................................................. I Biologicals ....................................................................... 5 Abbreviation/acronym key ............................................... I Antineoplastic Agents ..................................................... 5 Endocrine and Metabolic Drugs ...................................... 7 Cardiovascular Agents .................................................. 13 Respiratory Agents ....................................................... 19 Gastrointestinal Agents ................................................. 21 Genitourinary Agents .................................................... 23 Central Nervous System Drugs .................................... 24 Analgesics and Anesthetics .......................................... 29 Neuromuscular Drugs ................................................... 32 Nutritional Products......................................................
    [Show full text]