205494Orig1s000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WHO Drug Information Vol 22, No
WHO Drug Information Vol 22, No. 1, 2008 World Health Organization WHO Drug Information Contents Challenges in Biotherapeutics Miglustat: withdrawal by manufacturer 21 Regulatory pathways for biosimilar Voluntary withdrawal of clobutinol cough products 3 syrup 22 Pharmacovigilance Focus Current Topics WHO Programme for International Drug Proposed harmonized requirements: Monitoring: annual meeting 6 licensing vaccines in the Americas 23 Sixteen types of counterfeit artesunate Safety and Efficacy Issues circulating in South-east Asia 24 Eastern Mediterranean Ministers tackle Recall of heparin products extended 10 high medicines prices 24 Contaminated heparin products recalled 10 DacartTM development terminated and LapdapTM recalled 11 ATC/DDD Classification Varenicline and suicide attempts 11 ATC/DDD Classification (temporary) 26 Norelgestromin-ethynil estradiol: infarction ATC/DDD Classification (final) 28 and thromboembolism 12 Emerging cardiovascular concerns with Consultation Document rosiglitazone 12 Disclosure of transdermal patches 13 International Pharmacopoeia Statement on safety of HPV vaccine 13 Cycloserine 30 IVIG: myocardial infarction, stroke and Cycloserine capsules 33 thrombosis 14 Erythropoietins: lower haemoglobin levels 15 Recent Publications, Erythropoietin-stimulating agents 15 Pregabalin: hypersensitivity reactions 16 Information and Events Cefepime: increased mortality? 16 Assessing the quality of herbal medicines: Mycophenolic acid: pregnancy loss and contaminants and residues 36 congenital malformation 17 Launch -
Drug Consumption in 2017 - 2020
Page 1 Drug consumption in 2017 - 2020 2020 2019 2018 2017 DDD/ DDD/ DDD/ DDD/ 1000 inhab./ Hospital 1000 inhab./ Hospital 1000 inhab./ Hospital 1000 inhab./ Hospital ATC code Subgroup or chemical substance day % day % day % day % A ALIMENTARY TRACT AND METABOLISM 322,79 3 312,53 4 303,08 4 298,95 4 A01 STOMATOLOGICAL PREPARATIONS 14,28 4 12,82 4 10,77 6 10,46 7 A01A STOMATOLOGICAL PREPARATIONS 14,28 4 12,82 4 10,77 6 10,46 7 A01AA Caries prophylactic agents 11,90 3 10,48 4 8,42 5 8,45 7 A01AA01 sodium fluoride 11,90 3 10,48 4 8,42 5 8,45 7 A01AA03 olaflur 0,00 - 0,00 - 0,00 - 0,00 - A01AB Antiinfectives for local oral treatment 2,36 8 2,31 7 2,31 7 2,02 7 A01AB03 chlorhexidine 2,02 6 2,10 7 2,09 7 1,78 7 A01AB11 various 0,33 21 0,21 0 0,22 0 0,24 0 A01AD Other agents for local oral treatment 0,02 0 0,03 0 0,04 0 - - A01AD02 benzydamine 0,02 0 0,03 0 0,04 0 - - A02 DRUGS FOR ACID RELATED DISORDERS 73,05 3 71,13 3 69,32 3 68,35 3 A02A ANTACIDS 2,23 1 2,22 1 2,20 1 2,30 1 A02AA Magnesium compounds 0,07 22 0,07 22 0,08 22 0,10 19 A02AA04 magnesium hydroxide 0,07 22 0,07 22 0,08 22 0,10 19 A02AD Combinations and complexes of aluminium, 2,17 0 2,15 0 2,12 0 2,20 0 calcium and magnesium compounds A02AD01 ordinary salt combinations 2,17 0 2,15 0 2,12 0 2,20 0 A02B DRUGS FOR PEPTIC ULCER AND 70,82 3 68,91 3 67,12 3 66,05 4 GASTRO-OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 0,17 7 0,74 4 1,10 4 1,11 5 A02BA02 ranitidine 0,00 1 0,63 3 0,99 3 0,99 4 A02BA03 famotidine 0,16 7 0,11 8 0,11 10 0,12 9 A02BB Prostaglandins 0,04 62 -
The Effectiveness of Correcting Abnormal Metabolic Profiles
Received: 25 April 2019 Revised: 17 June 2019 Accepted: 19 June 2019 DOI: 10.1002/jimd.12139 ORIGINAL ARTICLE The effectiveness of correcting abnormal metabolic profiles Peter Theodore Clayton UCL Great Ormond Street Institute of Child Health, London, UK Abstract Inborn errors of metabolism cause disease because of accumulation of a metabolite Correspondence before the blocked step or deficiency of an essential metabolite downstream of the Peter Clayton, UCL Great Ormond Street Institute of Child Health, London, UK. block. Treatments can be directed at reducing the levels of a toxic metabolite or Email: [email protected] correcting a metabolite deficiency. Many disorders have been treated successfully first in a single patient because we can measure the metabolites and adjust treat- Communicating Editor: Sander M. Houten ment to get them as close as possible to the normal range. Examples are drawn from Komrower's description of treatment of homocystinuria and the author's trials 5 of treatment in bile acid synthesis disorders (3β-hydroxy-Δ -C27-steroid dehydro- genase deficiency and Δ4-3-oxosteroid 5β-reductase deficiency), neurotransmitter amine disorders (aromatic L-amino acid decarboxylase [AADC] and tyrosine hydroxylase deficiencies), and vitamin B6 disorders (pyridox(am)ine phosphate oxidase deficiency and pyridoxine-dependent epilepsy [ALDH7A1 deficiency]). Sometimes follow-up shows there are milder and more severe forms of the disease and even variable clinical manifestations but by measuring the metabolites we can adjust the treatment to get the metabolites into the normal range. Biochemical mea- surements are not subject to placebo effects and will also show if the disorder is improving spontaneously. -
Express Scripts 2020 National Preferred Formulary List
2020 Express Scripts National Preferred Formulary List The 2020 National Preferred Formulary drug list is shown below. The formulary is the list of drugs included in your prescription plan. Inclusion on the list does not guarantee coverage. The following list is not a complete list of over-the-counter [OTC] products and prescription medical supplies that are on the formulary. The only OTC products and prescription medical supplies that appear on the list are in contracted classes. PLEASE NOTE: Brand-name drugs may move to nonformulary status if a generic version becomes available during the year. Not all the drugs listed are covered by all prescription plans; check your benefit materials for the specific drugs covered and the copayments for your prescription plan. For specific questions about your coverage, please call the phone number printed on your member ID card. KEY For the member: FDA-approved generic medications meet strict standards and [INJ] – Injectable Drug contain the same active ingredients as their corresponding brand-name medications, [OTC] – Over-the-counter Product although they may have a different appearance. [SP] – Specialty Drug For the physician: Please prescribe preferred products and allow generic Brand-name drugs are listed in CAPITAL letters. Example: ABILIFY MAINTENA substitutions when medically appropriate. Generic drugs are listed in lower-case letters. Example: ibuprofen A adenosine [INJ] amabelz anthralin ADVAIR HFA amantadine APLISOL [INJ] abacavir [SP] ADVATE [INJ] [SP] AMBISOME [INJ] APOKYN [INJ] [SP] -
Orphan Drugs Used for Treatment in Pediatric Patients in the Slovak Republic
DOI 10.2478/v10219-012-0001-0 ACTA FACULTATIS PHARMACEUTICAE UNIVERSITATIS COMENIANAE Supplementum VI 2012 ORPHAN DRUGS USED FOR TREATMENT IN PEDIATRIC PATIENTS IN THE SLOVAK REPUBLIC 1Foltánová, T. – 2Konečný, M. – 3Hlavatá, A. –.4Štepánková, K. 5Cisárik, F. 1Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology 2Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava 32nd Department of Pediatrics, UniversityChildren'sHospital, Bratislava 4Slovak Cystic Fibrosis Association, Košice 5Department of Medical Genetics, Faculty Hospital, Žilina Due to the enormous success of scientific research in the field of paediatric medicine many once fatal children’s diseases can now be cured. Great progress has also been achieved in the rehabilitation of disabilities. However, there is still a big group of diseases defined as rare, treatment of which has been traditionally neglected by the drug companies mainly due to unprofitability. Since 2000 the treatment of rare diseases has been supported at the European level and in 2007 paediatric legislation was introduced. Both decisions together support treatment of rare diseases in children. In this paper, we shortly characterise the possibilities of rare diseases treatment in children in the Slovak republic and bring the list of orphan medicine products (OMPs) with defined dosing in paediatrics, which were launched in the Slovak market. We also bring a list of OMPs with defined dosing in children, which are not available in the national market. This incentive may help in further formation of the national plan for treating rare diseases as well as improvement in treatment options and availability of rare disease treatment in children in Slovakia. -
NTSAD Web Page on Miglustat Fran Platt Substrate Reduction Therapy
NTSAD Web Page on Miglustat Fran Platt Substrate Reduction Therapy for LSDs Background Several lysosomal storage diseases (LSDs) involve the storage of fatty molecules within cells of the body that are called sphingolipids (1). This is because an enzyme that normally works to break these molecules down in the lysosome, the waste disposal/recycling center of our cells, does not work properly (2, 3). Some sphingolipids are modified by the cells of our bodies by adding sugars, creating a family of specialized sphingolipids called glycosphingolipids (GSLs) (1). For example, in Gaucher disease a glycosphingolipid called glucosylceramide is not broken down and is stored, whereas in Tay-Sachs and Sandhoff disease it is a glycosphingolipid called GM2 ganglioside that is stored (1). Glycosphingolipids are made in the cells of our bodies by a single metabolic pathway that begins with the addition of a sugar molecule called glucose to a sphingolipid molecule called ceramide (1). The fact that there is only a single major pathway to make most glycosphingolipids offers a potential way of treating these diseases using a small molecule drug (4). How would a drug work? The principle behind this treatment is called substrate reduction therapy (SRT)(4). The idea is to partially block the cells in our body from making glycosphingolipids, specifically stopping them from adding glucose to ceramide, which is the first step in this pathway. This would mean fewer glycosphingolipids are made, so fewer would require breaking down in the lysosome. The aim is to balance the rates of glycosphingolipid manufacture with their impaired rate of breakdown. -
Quantum of Effectiveness Evidence in FDA's Approval of Orphan Drugs
Quantum of Effectiveness Evidence in FDA’s Approval of Orphan Drugs Cataloguing FDA’s Flexibility in Regulating Therapies for Persons with Rare Disorders by Frank J. Sasinowski, M.S., M.P.H., J.D.1 Chairman of the Board National Organization for Rare Disorders One of the key underlying issues facing the development of effective for their intended uses. all drugs, and particularly orphan drugs, is what kind of evi- dence the Food and Drug Administration (FDA) requires for FDA has for many decades acknowledged that there is a need approval. The Federal Food, Drug, and Cosmetic [FD&C] Act IRUÁH[LELOLW\LQDSSO\LQJLWVVWDQGDUGIRUDSSURYDO)RUH[- provides that for FDA to grant approval for a new drug, there ample, one of FDA’s regulations states that: “FDA will ap- must be “substantial evidence” of effectiveness derived from prove an application after it determines that the drug meets the “adequate and well-controlled investigations.” This language, statutory standards for safety and effectiveness… While the which dates from 1962, provides leeway for FDA medical re- statutory standards apply to all drugs, the many kinds of drugs viewers to make judgments as to what constitutes “substantial that are subject to the statutory standards and the wide range HYLGHQFHµRIDGUXJ·VHIIHFWLYHQHVVWKDWLVRILWVEHQHÀWWR RIXVHVIRUWKRVHGUXJVGHPDQGÁH[LELOLW\LQDSSO\LQJWKHVWDQ- patients. GDUGV7KXV)'$LVUHTXLUHGWRH[HUFLVHLWVVFLHQWLÀFMXGJPHQW to determine the kind and quantity of data and information an 7KHVROHODZWKDWDSSOLHVVSHFLÀFDOO\WRRUSKDQGUXJVWKH2U- applicant is required to provide for a particular drug to meet SKDQ'UXJ$FWRISURYLGHGÀQDQFLDOLQFHQWLYHVIRUGUXJ the statutory standards.” 21 C.F.R. § 314.105(c). FRPSDQLHVWRGHYHORSRUSKDQGUXJVZKLFKLVOHJDOO\GHÀQHG as products that treat diseases that affect 200,000 or fewer )'$SXEOLFO\KDVH[SUHVVHGVHQVLWLYLW\WRDSSO\LQJWKLVÁH[- patients in the U.S. -
2021 Formulary List of Covered Prescription Drugs
2021 Formulary List of covered prescription drugs This drug list applies to all Individual HMO products and the following Small Group HMO products: Sharp Platinum 90 Performance HMO, Sharp Platinum 90 Performance HMO AI-AN, Sharp Platinum 90 Premier HMO, Sharp Platinum 90 Premier HMO AI-AN, Sharp Gold 80 Performance HMO, Sharp Gold 80 Performance HMO AI-AN, Sharp Gold 80 Premier HMO, Sharp Gold 80 Premier HMO AI-AN, Sharp Silver 70 Performance HMO, Sharp Silver 70 Performance HMO AI-AN, Sharp Silver 70 Premier HMO, Sharp Silver 70 Premier HMO AI-AN, Sharp Silver 73 Performance HMO, Sharp Silver 73 Premier HMO, Sharp Silver 87 Performance HMO, Sharp Silver 87 Premier HMO, Sharp Silver 94 Performance HMO, Sharp Silver 94 Premier HMO, Sharp Bronze 60 Performance HMO, Sharp Bronze 60 Performance HMO AI-AN, Sharp Bronze 60 Premier HDHP HMO, Sharp Bronze 60 Premier HDHP HMO AI-AN, Sharp Minimum Coverage Performance HMO, Sharp $0 Cost Share Performance HMO AI-AN, Sharp $0 Cost Share Premier HMO AI-AN, Sharp Silver 70 Off Exchange Performance HMO, Sharp Silver 70 Off Exchange Premier HMO, Sharp Performance Platinum 90 HMO 0/15 + Child Dental, Sharp Premier Platinum 90 HMO 0/20 + Child Dental, Sharp Performance Gold 80 HMO 350 /25 + Child Dental, Sharp Premier Gold 80 HMO 250/35 + Child Dental, Sharp Performance Silver 70 HMO 2250/50 + Child Dental, Sharp Premier Silver 70 HMO 2250/55 + Child Dental, Sharp Premier Silver 70 HDHP HMO 2500/20% + Child Dental, Sharp Performance Bronze 60 HMO 6300/65 + Child Dental, Sharp Premier Bronze 60 HDHP HMO -
Specialty Drugs Requiring Precertification
Specialty Drugs Requiring Precertification Policy Number: Original Effective Date: MM.04.009 09/01/2008 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 06/27/2014 Section: Prescription Drugs Place(s) of Service: Home; Office; Outpatient; Ambulatory Infusion Suite I. Description A specialty drug is a drug that is typically high in cost (greater than $600 per month) and has one or more of the following characteristics: Specialized patient training on the administration of the drug (including supplies and devices needed for administration) is required. Coordination of care is required prior to drug therapy initiation and/or during therapy. Unique patient compliance and safety monitoring requirements. Unique requirements for handling, shipping and storage. Restricted access or limited distribution. The intent of this policy is to require precertification of designated specialty drugs on the date of approval by the Food and Drug Administration (FDA). This policy applies to drugs covered under the medical benefit and under the prescription drug rider benefit. II. Criteria/Guidelines A. Precertification is required for specialty drugs, effective on the date of approval by the FDA. Refer to Appendices A and B for the lists of drugs requiring precertification. B. A specialty drug is covered (subject to Limitations/Exclusions and Administrative Guidelines) when the following criteria are met: 1. It is prescribed for an FDA approved indication. a. Its use is consistent with the manufacturer’s prescribing information. b. When the FDA-approved indication lacks patient selection specificity, the patient meets the eligibility criteria for the clinical study or studies upon which the FDA approval was based. -
Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories. -
Lucerastat, an Iminosugar with Potential As Substrate Reduction Therapy for Glycolipid Storage Disorders: Safety, Tolerability
Guérard et al. Orphanet Journal of Rare Diseases (2017) 12:9 DOI 10.1186/s13023-017-0565-9 RESEARCH Open Access Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects N. Guérard1*, O. Morand2 and J. Dingemanse1 Abstract Background: Lucerastat, an inhibitor of glucosylceramide synthase, has the potential to restore the balance between synthesis and degradation of glycosphingolipids in glycolipid storage disorders such as Gaucher disease and Fabry disease. The safety, tolerability, and pharmacokinetics of oral lucerastat were evaluated in two separate randomized, double-blind, placebo-controlled, single- and multiple-ascending dose studies (SAD and MAD, respectively) in healthy male subjects. Methods: In the SAD study, 31 subjects received placebo or a single oral dose of 100, 300, 500, or 1000 mg lucerastat. Eight additional subjects received two doses of 1000 mg lucerastat or placebo separated by 12 h. In the MAD study, 37 subjects received placebo or 200, 500, or 1000 mg b.i.d. lucerastat for 7 consecutive days. Six subjects in the 500 mg cohort received lucerastat in both absence and presence of food. Results: In the SAD study, 15 adverse events (AEs) were reported in ten subjects. Eighteen AEs were reported in 15 subjects in the MAD study, in which the 500 mg dose cohort was repeated because of elevated alanine aminotransferase (ALT) values in 4 subjects, not observed in other dose cohorts. No severe or serious AE was observed. No clinically relevant abnormalities regarding vital signs and 12–lead electrocardiograms were observed. Lucerastat Cmax values were comparable between studies, with geometric mean Cmax 10.5 (95% CI: 7.5, 14.7) and 11.1 (95% CI: 8.7, 14.2) μg/mL in the SAD and MAD study, respectively, after 1000 mg lucerastat b.i.d. -
State and Specialty Pharmacy Drug Reimbursement Rates
State and Specialty Pharmacy Drug Reimbursement The following table lists specialty pharmacy drug reimbursement rates. ForwardHealth defines specialty drugs as drugs requiring comprehensive patient care services, clinical management, and product support services. Drugs that meet ForwardHealth’s definition of specialty drugs will be reimbursed using the following rates. However, these rates do not apply to specialty drugs purchased through the federal 340B Drug Discount Program, which will be reimbursed according to the 340B ingredient cost reimbursement methodology. If ForwardHealth uses State Maximum Allowable Cost (SMAC) reimbursement in the future, the SMAC reimbursement rates will be published in this table. Effective 11/01/2020 EAC* EAC* Label Generic Name - Label - Generic ANEMIA/NEUTROPENIA DRUGS ARANESP DARBEPOETIN ALFA IN POLYSORBAT -1.0% EPOGEN EPOETIN ALFA -1.6% FULPHILA PEGFILGRASTIM-JMDB -1.0% GRANIX TBO-FILGRASTIM -1.0% MIRCERA METHOXY PEG-EPOETIN BETA -0.4% NEULASTA PEGFILGRASTIM -1.0% NEUPOGEN FILGRASTIM -1.0% NIVESTYM FILGRASTIM-AAFI -1.0% PROCRIT EPOETIN ALFA -1.6% RETACRIT EPOETIN ALFA-EPBX -1.0% UDENYCA PEGFILGRASTIM-CBQV -1.0% ZARXIO FILGRASTIM-SNDZ -1.0% ZIEXTENZO PEGFILGRASTIM-BMEZ -1.0% ANTICOAGULANT DRUGS ARIXTRA FONDAPARINUX SODIUM -3.0% -50.0% FONDAPARINUX SODIUM FONDAPARINUX SODIUM -50.0% FRAGMIN DALTEPARIN SODIUM,PORCINE -0.4% THROMBATE III ANTITHROMBIN III (PLASMA DER) -0.4% ANTI-INFECTIVE DRUGS ABELCET AMPHOTERICIN B LIPID COMPLEX -0.4% AMBISOME AMPHOTERICIN B LIPOSOME -0.4% ANCOBON FLUCYTOSINE -0.4% -1.0%