Simultaneously Testing for Location and Scale Parameters of Two Multivariate Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix a Basic Statistical Concepts for Sensory Evaluation
Appendix A Basic Statistical Concepts for Sensory Evaluation Contents This chapter provides a quick introduction to statistics used for sensory evaluation data including measures of A.1 Introduction ................ 473 central tendency and dispersion. The logic of statisti- A.2 Basic Statistical Concepts .......... 474 cal hypothesis testing is introduced. Simple tests on A.2.1 Data Description ........... 475 pairs of means (the t-tests) are described with worked A.2.2 Population Statistics ......... 476 examples. The meaning of a p-value is reviewed. A.3 Hypothesis Testing and Statistical Inference .................. 478 A.3.1 The Confidence Interval ........ 478 A.3.2 Hypothesis Testing .......... 478 A.3.3 A Worked Example .......... 479 A.1 Introduction A.3.4 A Few More Important Concepts .... 480 A.3.5 Decision Errors ............ 482 A.4 Variations of the t-Test ............ 482 The main body of this book has been concerned with A.4.1 The Sensitivity of the Dependent t-Test for using good sensory test methods that can generate Sensory Data ............. 484 quality data in well-designed and well-executed stud- A.5 Summary: Statistical Hypothesis Testing ... 485 A.6 Postscript: What p-Values Signify and What ies. Now we turn to summarize the applications of They Do Not ................ 485 statistics to sensory data analysis. Although statistics A.7 Statistical Glossary ............. 486 are a necessary part of sensory research, the sensory References .................... 487 scientist would do well to keep in mind O’Mahony’s admonishment: statistical analysis, no matter how clever, cannot be used to save a poor experiment. The techniques of statistical analysis, do however, It is important when taking a sample or designing an serve several useful purposes, mainly in the efficient experiment to remember that no matter how powerful summarization of data and in allowing the sensory the statistics used, the inferences made from a sample scientist to make reasonable conclusions from the are only as good as the data in that sample. -
On the Scale Parameter of Exponential Distribution
Review of the Air Force Academy No.2 (34)/2017 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Anca Ileana LUPAŞ Military Technical Academy, Bucharest, Romania ([email protected]) DOI: 10.19062/1842-9238.2017.15.2.16 Abstract: Exponential distribution is one of the widely used continuous distributions in various fields for statistical applications. In this paper we study the exact and asymptotical distribution of the scale parameter for this distribution. We will also define the confidence intervals for the studied parameter as well as the fixed length confidence intervals. 1. INTRODUCTION Exponential distribution is used in various statistical applications. Therefore, we often encounter exponential distribution in applications such as: life tables, reliability studies, extreme values analysis and others. In the following paper, we focus our attention on the exact and asymptotical repartition of the exponential distribution scale parameter estimator. 2. SCALE PARAMETER ESTIMATOR OF THE EXPONENTIAL DISTRIBUTION We will consider the random variable X with the following cumulative distribution function: x F(x ; ) 1 e ( x 0 , 0) (1) where is an unknown scale parameter Using the relationships between MXXX( ) ; 22( ) ; ( ) , we obtain ()X a theoretical variation coefficient 1. This is a useful indicator, especially if MX() you have observational data which seems to be exponential and with variation coefficient of the selection closed to 1. If we consider x12, x ,... xn as a part of a population that follows an exponential distribution, then by using the maximum likelihood estimation method we obtain the following estimate n ˆ 1 xi (2) n i1 119 On the Scale Parameter of Exponential Distribution Since M ˆ , it follows that ˆ is an unbiased estimator for . -
Estimation of Common Location and Scale Parameters in Nonregular Cases Ahmad Razmpour Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Estimation of common location and scale parameters in nonregular cases Ahmad Razmpour Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Razmpour, Ahmad, "Estimation of common location and scale parameters in nonregular cases " (1982). Retrospective Theses and Dissertations. 7528. https://lib.dr.iastate.edu/rtd/7528 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
A Comparison of Unbiased and Plottingposition Estimators of L
WATER RESOURCES RESEARCH, VOL. 31, NO. 8, PAGES 2019-2025, AUGUST 1995 A comparison of unbiased and plotting-position estimators of L moments J. R. M. Hosking and J. R. Wallis IBM ResearchDivision, T. J. Watson ResearchCenter, Yorktown Heights, New York Abstract. Plotting-positionestimators of L momentsand L moment ratios have several disadvantagescompared with the "unbiased"estimators. For generaluse, the "unbiased'? estimatorsshould be preferred. Plotting-positionestimators may still be usefulfor estimatingextreme upper tail quantilesin regional frequencyanalysis. Probability-Weighted Moments and L Moments •r+l-" (--1)r • P*r,k Olk '- E p *r,!•[J!•. Probability-weightedmoments of a randomvariable X with k=0 k=0 cumulativedistribution function F( ) and quantile function It is convenient to define dimensionless versions of L mo- x( ) were definedby Greenwoodet al. [1979]to be the quan- tities ments;this is achievedby dividingthe higher-orderL moments by the scale measure h2. The L moment ratios •'r, r = 3, Mp,ra= E[XP{F(X)}r{1- F(X)} s] 4, '", are definedby ßr-" •r/•2 ß {X(u)}PUr(1 -- U)s du. L momentratios measure the shapeof a distributionindepen- dently of its scaleof measurement.The ratios *3 ("L skew- ness")and *4 ("L kurtosis")are nowwidely used as measures Particularlyuseful specialcases are the probability-weighted of skewnessand kurtosis,respectively [e.g., Schaefer,1990; moments Pilon and Adamowski,1992; Royston,1992; Stedingeret al., 1992; Vogeland Fennessey,1993]. 12•r= M1,0, r = •01 (1 - u)rx(u) du, Estimators Given an ordered sample of size n, Xl: n • X2:n • ''' • urx(u) du. X.... there are two establishedways of estimatingthe proba- /3r--- Ml,r, 0 =f01 bility-weightedmoments and L moments of the distribution from whichthe samplewas drawn. -
The Asymmetric T-Copula with Individual Degrees of Freedom
The Asymmetric t-Copula with Individual Degrees of Freedom d-fine GmbH Christ Church University of Oxford A thesis submitted for the degree of MSc in Mathematical Finance Michaelmas 2012 Abstract This thesis investigates asymmetric dependence structures of multivariate asset returns. Evidence of such asymmetry for equity returns has been reported in the literature. In order to model the dependence structure, a new t-copula approach is proposed called the skewed t-copula with individ- ual degrees of freedom (SID t-copula). This copula provides the flexibility to assign an individual degree-of-freedom parameter and an individual skewness parameter to each asset in a multivariate setting. Applying this approach to GARCH residuals of bivariate equity index return data and using maximum likelihood estimation, we find significant asymmetry. By means of the Akaike information criterion, it is demonstrated that the SID t-copula provides the best model for the market data compared to other copula approaches without explicit asymmetry parameters. In addition, it yields a better fit than the conventional skewed t-copula with a single degree-of-freedom parameter. In a model impact study, we analyse the errors which can occur when mod- elling asymmetric multivariate SID-t returns with the symmetric multi- variate Gauss or standard t-distribution. The comparison is done in terms of the risk measures value-at-risk and expected shortfall. We find large deviations between the modelled and the true VaR/ES of a spread posi- tion composed of asymmetrically distributed risk factors. Going from the bivariate case to a larger number of risk factors, the model errors increase. -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
Generalized Inferences for the Common Scale Parameter of Several Pareto Populations∗
InternationalInternational JournalJournal of of Statistics Statistics and and Management Management System System Vol.Vol. 4 No. 12 (January-June,(July-December, 2019) 2019) International Journal of Statistics and Management System, 2010, Vol. 5, No. 1–2, pp. 118–126. c 2010 Serials Publications Generalized inferences for the common scale parameter of several Pareto populations∗ Sumith Gunasekera†and Malwane M. A. Ananda‡ Received: 13th August 2018 Revised: 24th December 2018 Accepted: 10th March 2019 Abstract A problem of interest in this article is statistical inferences concerning the com- mon scale parameter of several Pareto distributions. Using the generalized p-value approach, exact confidence intervals and the exact tests for testing the common scale parameter are given. Examples are given in order to illustrate our procedures. A limited simulation study is given to demonstrate the performance of the proposed procedures. 1 Introduction In this paper, we consider k (k ≥ 2) independent Pareto distributions with an unknown common scale parameter θ (sometimes referred to as the “location pa- rameter” and also as the “truncation parameter”) and unknown possibly unequal shape parameters αi’s (i = 1, 2, ..., k). Using the generalized variable approach (Tsui and Weer- ahandi [8]), we construct an exact test for testing θ. Furthermore, using the generalized confidence interval (Weerahandi [11]), we construct an exact confidence interval for θ as well. A limited simulation study was carried out to compare the performance of these gen- eralized procedures with the approximate procedures based on the large sample method as well as with the other test procedures based on the combination of p-values. -
A Bayesian Hierarchical Spatial Copula Model: an Application to Extreme Temperatures in Extremadura (Spain)
atmosphere Article A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain) J. Agustín García 1,† , Mario M. Pizarro 2,*,† , F. Javier Acero 1,† and M. Isabel Parra 2,† 1 Departamento de Física, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain; [email protected] (J.A.G.); [email protected] (F.J.A.) 2 Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: A Bayesian hierarchical framework with a Gaussian copula and a generalized extreme value (GEV) marginal distribution is proposed for the description of spatial dependencies in data. This spatial copula model was applied to extreme summer temperatures over the Extremadura Region, in the southwest of Spain, during the period 1980–2015, and compared with the spatial noncopula model. The Bayesian hierarchical model was implemented with a Monte Carlo Markov Chain (MCMC) method that allows the distribution of the model’s parameters to be estimated. The results show the GEV distribution’s shape parameter to take constant negative values, the location parameter to be altitude dependent, and the scale parameter values to be concentrated around the same value throughout the region. Further, the spatial copula model chosen presents lower deviance information criterion (DIC) values when spatial distributions are assumed for the GEV distribution’s Citation: García, J.A.; Pizarro, M.M.; location and scale parameters than when the scale parameter is taken to be constant over the region. Acero, F.J.; Parra, M.I. A Bayesian Hierarchical Spatial Copula Model: Keywords: Bayesian hierarchical model; extreme temperature; Gaussian copula; generalized extreme An Application to Extreme value distribution Temperatures in Extremadura (Spain). -
One Sample T Test
Copyright c October 17, 2020 by NEH One Sample t Test Nathaniel E. Helwig University of Minnesota 1 How Beer Changed the World William Sealy Gosset was a chemist and statistician who was employed as the Head Exper- imental Brewer at Guinness in the early 1900s. As a part of his job, Gosset was responsible for taking samples of beer and performing various analyses to ensure that the beer was of the proper composition and quality. While at Guinness, Gosset taught himself experimental design and statistical analysis (which were new and exciting fields at the time), and he even spent some time in 1906{1907 studying in Karl Pearson's laboratory. Gosset's work often involved collecting a small number of samples, and testing hypotheses about the mean of the population from which the samples were drawn. For example, in the brewery, Gosset may want to test whether the population mean amount of some ingredient (e.g., barley) was equal to the intended value. And, on the farm, Gosset may want to test how different farming techniques and growing conditions affect the barley yields. Through this work, Gos- set noticed that the normal distribution was not adequate for testing hypotheses about the mean in small samples of data with an unknown variance. 2 2 1 Pn As a reminder, if X ∼ N(µ, σ ), thenx ¯ ∼ N(µ, σ =n) wherex ¯ = n i=1 xi, which implies x¯ − µ Z = p ∼ N(0; 1) σ= n i.e., the Z test statistic follows a standard normal distribution. However, in practice, the 2 2 1 Pn 2 population variance σ is often unknown, so the sample variance s = n−1 i=1(xi − x¯) must be used in its place. -
Procedures for Estimation of Weibull Parameters James W
United States Department of Agriculture Procedures for Estimation of Weibull Parameters James W. Evans David E. Kretschmann David W. Green Forest Forest Products General Technical Report February Service Laboratory FPL–GTR–264 2019 Abstract Contents The primary purpose of this publication is to provide an 1 Introduction .................................................................. 1 overview of the information in the statistical literature on 2 Background .................................................................. 1 the different methods developed for fitting a Weibull distribution to an uncensored set of data and on any 3 Estimation Procedures .................................................. 1 comparisons between methods that have been studied in the 4 Historical Comparisons of Individual statistics literature. This should help the person using a Estimator Types ........................................................ 8 Weibull distribution to represent a data set realize some advantages and disadvantages of some basic methods. It 5 Other Methods of Estimating Parameters of should also help both in evaluating other studies using the Weibull Distribution .......................................... 11 different methods of Weibull parameter estimation and in 6 Discussion .................................................................. 12 discussions on American Society for Testing and Materials Standard D5457, which appears to allow a choice for the 7 Conclusion ................................................................ -
Volatility Modeling Using the Student's T Distribution
Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data. -
Determination of the Weibull Parameters from the Mean Value and the Coefficient of Variation of the Measured Strength for Brittle Ceramics
Journal of Advanced Ceramics 2017, 6(2): 149–156 ISSN 2226-4108 DOI: 10.1007/s40145-017-0227-3 CN 10-1154/TQ Research Article Determination of the Weibull parameters from the mean value and the coefficient of variation of the measured strength for brittle ceramics Bin DENGa, Danyu JIANGb,* aDepartment of the Prosthodontics, Chinese PLA General Hospital, Beijing 100853, China bAnalysis and Testing Center for Inorganic Materials, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China Received: January 11, 2017; Accepted: April 7, 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract: Accurate estimation of Weibull parameters is an important issue for the characterization of the strength variability of brittle ceramics with Weibull statistics. In this paper, a simple method was established for the determination of the Weibull parameters, Weibull modulus m and scale parameter 0 , based on Monte Carlo simulation. It was shown that an unbiased estimation for Weibull modulus can be yielded directly from the coefficient of variation of the considered strength sample. Furthermore, using the yielded Weibull estimator and the mean value of the strength in the considered sample, the scale parameter 0 can also be estimated accurately. Keywords: Weibull distribution; Weibull parameters; strength variability; unbiased estimation; coefficient of variation 1 Introduction likelihood (ML) method. Many studies [9–18] based on Monte Carlo simulation have shown that each of these Weibull statistics [1] has been widely employed to methods has its benefits and drawbacks. model the variability in the fracture strength of brittle According to the theory of statistics, the expected ceramics [2–8].