REGIONAL GEOLOGY by C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Carboniferous Bowland Shale Gas Study: Geology and Resource Estimation
THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION The Carboniferous Bowland Shale gas study: geology and resource estimation i © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Disclaimer This report is for information only. It does not constitute legal, technical or professional advice. The Department of Energy and Climate Change does not accept any liability for any direct, indirect or consequential loss or damage of any nature, however caused, which may be sustained as a result of reliance upon the information contained in this report. All material is copyright. It may be produced in whole or in part subject to the inclusion of an acknowledgement of the source, but should not be included in any commercial usage or sale. Reproduction for purposes other than those indicated above requires the written permission of the Department of Energy and Climate Change. Suggested citation: Andrews, I.J. 2013. The Carboniferous Bowland Shale gas study: geology and resource estimation. British Geological Survey for Department of Energy and Climate Change, London, UK. Requests and enquiries should be addressed to: Toni Harvey Senior Geoscientist - UK Onshore Email: [email protected] ii © DECC 2013 THE CARBONIFEROUS BOWLAND SHALE GAS STUDY: GEOLOGY AND RESOURCE ESTIMATION Foreword This report has been produced under contract by the British Geological Survey (BGS). It is based on a recent analysis, together with published data and interpretations. Additional information is available at the Department of Energy and Climate Change (DECC) website. https://www.gov.uk/oil-and-gas-onshore-exploration-and-production. This includes licensing regulations, maps, monthly production figures, basic well data and where to view and purchase data. -
Limestone Rock in Derbyshire's White Peak
Limestone Rock In Derbyshire’s White Peak The rocks of the Carboniferous period starting with the oldest (lowest) are; Limestone Rock, the Edale Shales, Millstone Grit and the Coal Measures. The only rocks missing locally (the Hope Valley area) are the Coal Measures. The most abundant and most interesting of all these rocks is Limestone. Read on and find out how interesting it really is. Using the most up to date measuring techniques the Carboniferous Limestone of the White Peak of Derbyshire is estimated to be about 350 million years old. (2010). It is made from the limey shells, bones and secretions of marine life. Creatures living in ancient semi-tropical seas obtained calcium (lime) from the sea water to make their shells, bones, and limey structures. When these creatures died they sank to the sea floor where they were gradually compressed and cemented together to make limestone rock. Some of these sea creatures retained their shape and we see them as fossils. The steep sloping fronts of the hills on the south and west sides of the Hope Valley including Mitchill Bank, Cow Low, Long Cliff and Treak Cliff are all that is left on the surface of a great reef. These reef limestones are very rich in the fossilised remains of sea creatures, some are very rare, others very common, like crinoids, plant-like creatures that lived on the sea bed about 350 million years ago. They varied in size, up to about a metre high. Crinoids were very easily damaged by wave action so we see an abundance of broken stems but very rarely a complete fossilised crinoid. -
Davenport Green to Ardwick
High Speed Two Phase 2b ww.hs2.org.uk October 2018 Working Draft Environmental Statement High Speed Rail (Crewe to Manchester and West Midlands to Leeds) Working Draft Environmental Statement Volume 2: Community Area report | Volume 2 | MA07 MA07: Davenport Green to Ardwick High Speed Two (HS2) Limited Two Snowhill, Snow Hill Queensway, Birmingham B4 6GA Freephone: 08081 434 434 Minicom: 08081 456 472 Email: [email protected] H10 hs2.org.uk October 2018 High Speed Rail (Crewe to Manchester and West Midlands to Leeds) Working Draft Environmental Statement Volume 2: Community Area report MA07: Davenport Green to Ardwick H10 hs2.org.uk High Speed Two (HS2) Limited has been tasked by the Department for Transport (DfT) with managing the delivery of a new national high speed rail network. It is a non-departmental public body wholly owned by the DfT. High Speed Two (HS2) Limited, Two Snowhill Snow Hill Queensway Birmingham B4 6GA Telephone: 08081 434 434 General email enquiries: [email protected] Website: www.hs2.org.uk A report prepared for High Speed Two (HS2) Limited: High Speed Two (HS2) Limited has actively considered the needs of blind and partially sighted people in accessing this document. The text will be made available in full on the HS2 website. The text may be freely downloaded and translated by individuals or organisations for conversion into other accessible formats. If you have other needs in this regard please contact High Speed Two (HS2) Limited. © High Speed Two (HS2) Limited, 2018, except where otherwise stated. Copyright in the typographical arrangement rests with High Speed Two (HS2) Limited. -
Reconstructing Palaeoenvironments of the White Peak Region of Derbyshire, Northern England
THE UNIVERSITY OF HULL Reconstructing Palaeoenvironments of the White Peak Region of Derbyshire, Northern England being a Thesis submitted for the Degree of Doctor of Philosophy in the University of Hull by Simon John Kitcher MPhysGeog May 2014 Declaration I hereby declare that the work presented in this thesis is my own, except where otherwise stated, and that it has not been previously submitted in application for any other degree at any other educational institution in the United Kingdom or overseas. ii Abstract Sub-fossil pollen from Holocene tufa pool sediments is used to investigate middle – late Holocene environmental conditions in the White Peak region of the Derbyshire Peak District in northern England. The overall aim is to use pollen analysis to resolve the relative influence of climate and anthropogenic landscape disturbance on the cessation of tufa production at Lathkill Dale and Monsal Dale in the White Peak region of the Peak District using past vegetation cover as a proxy. Modern White Peak pollen – vegetation relationships are examined to aid semi- quantitative interpretation of sub-fossil pollen assemblages. Moss-polsters and vegetation surveys incorporating novel methodologies are used to produce new Relative Pollen Productivity Estimates (RPPE) for 6 tree taxa, and new association indices for 16 herb taxa. RPPE’s of Alnus, Fraxinus and Pinus were similar to those produced at other European sites; Betula values displaying similarity with other UK sites only. RPPE’s for Fagus and Corylus were significantly lower than at other European sites. Pollen taphonomy in woodland floor mosses in Derbyshire and East Yorkshire is investigated. -
STRATEGIC STONE STUDY a Building Stone Atlas of Lancashire
STRATEGIC STONE STUDY A Building Stone Atlas of Lancashire Published December 2011 Derived from BGS digital geological mapping at 1:625,000 scale, British Geological Survey © Lancashire Bedrock Geology NERC. All rights reserved Click on this link to visit Lancashire’s geology and its contribution to known building stones, stone structures and building stone quarries (Opens in new window http://maps.bgs.ac.uk/buildingstone?County=Lancashire ) Lancashire Strategic Stone Study 1 Introduction The bedrock geology of Lancashire is dominated by fine to very coarse-grained SANDSTONES of Carboniferous and, to a lesser extent, Permo-Triassic age. There are, in addition, locally important outcrops of LIMESTONE. The Carboniferous rocks occupy a broad swathe of the east of the county, wrapping around a Triassic ‘core’ in the lowlands of the west, which is largely buried under thick accumulations of glacial till (Quaternary). The competence of the Carboniferous sandstones is reflected in the rugged moorland of east Lancashire, which in turn is reflected in the ‘sturdy’ character of the built landscape. The limestones present in northern Lancashire and around Clitheroe bring a lighter ‘openness’ to the villages of these areas. Lowland Lancashire, meanwhile, is primarily brick country, with the exception of some Triassic sandstone pockets around Ormskirk and Heysham. The widespread availability of durable building stone led to the development of quarrying throughout central and eastern Lancashire, with Rossendale (during the 1870s) exporting vast amounts of building stone to other areas of Britain and also abroad. Only a small number of quarries produce building stone today, with most of the industry now focussing on the supply of crushed stone products. -
Seismic Studies on the Derbyshire Dome D
SEISMIC STUDIES ON THE DERBYSHIRE DOME DAVID EDWARD ROGERS A Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Department of Earth Sciences The University Leeds LS2 9JT February 1983 PhD Thesis February1983 SEISMIC STUDIES ON THE DERBYSHIRE DOME D. E. ROGERS Dept Earth Sciences ABSTRACT The Derbyshire Dome is thought to have been a stable uplifted area since at least Lower Carboniferous times. This project is principally concerned with four 30km seismic refraction lines which crossed the limestone outcrop of Derbyshire and N. Staffordshire in order to investigate the Dome's upper crustal structure, using quarry blasts as seismic sources. A time-term analysis of refracted arrival data defined basement structure more complicated than implied by the surface geology. The interpretation of these data was complicated by high (5.6-5.8km/s) velocity refractions from dolomitic horizons within the limestone sequence; the mean overburden velocity was determined to be about 5.2 km/s. The Dome could be divided into two pre-Carboniferous geological units separated approx- imately by the line of the NNW trending Bonsall Fault. To the north a broadly domal refractor of velocity 5.5-5.55km/s was mapped, and thought to correlate with both the shallow pre- Carboniferous volcanics encountered by the Woo Dale borehole and"the Ordovician shales encountered by the Eyam borehole below 1.8km of limestone. This refractor accordingly deepens beneath the Carboniferous sedimentary basins flanking the Dome. To the south of the Bonsall Fault zone, the Carbonifer- ous was found to be underlain by a refractor of velocity 5.63-5.7km/s, thought to be of Precambrian material similar to the rocks of Charnwood Forest, Leicestershire, some 40km south. -
Monday 7Th December 2009
The Black Country Geological Society October 2009 Newsletter No. 197 The Society provides limited personal accident cover for members attending meetings or field trips. Details can be obtained from the Secretary. Non-members attending society field trips are advised to take out your own personal accident insurance to the level you feel appropriate. Schools and other bodies should arrange their own insurance as a matter of course. Leaders provide their services on a purely voluntary basis and may not be professionally qualified in this capacity. The Society does not provide hard hats for use of members or visitors at field meetings. It is your responsibility to provide your own hard hat and other safety equipment (such as safety boots and goggles/glasses) and to use it when you feel it is necessary or when a site owner makes it a condition of entry. Hammering is seldom necessary. It is the responsibility of the hammerer to ensure that other people are at a safe distance before doing so. Copy date for the next Newsletter is Committee th Chairman Monday 7 December 2009 Gordon Hensman B.Sc., F.R.Met.S. Vice-Chairman Alan Cutler B.Sc., M.C.A.M., Dip.M., M.CIM. Contents: Hon Treasurer Mike Williams B.Sc. Future Programme 2 Hon Secretary Other Societies 2 Barbara Russell Field Secretary New Geology Leaflets 4 Andrew Harrison B.Sc., M.Sc., F.G.S. Editorial 4 Other Members The 'Dudley Bug' 5 Bob Bucki M.I.Biol, Rock & Fossil Festival Report 7 GIFireE. Les Riley Ph.D., B.Sc., Field Report - Castleton Area 7 F.G.S., C.Geol., C.Sci., C.Petrol.Geol., EuroGeol. -
Devonian and Carboniferous Stratigraphical Correlation and Interpretation in the East Irish
CR/16/040 Last modified: 2016/05/30 11:40 Carboniferous stratigraphical correlation and interpretation in the Irish Sea Energy and Marine Geoscience Programme Commissioned Report CR/16/040 CR/16/040 Last modified: 2016/05/30 11:40 BRITISH GEOLOGICAL SURVEY ENERGY AND MARINE GEOSCIENCE PROGRAMME COMMISSIONED REPORT CR/16/040 Carboniferous stratigraphical correlation and interpretation The National Grid and other Ordnance Survey data © Crown Copyright and database rights in the Irish Sea 2015. Ordnance Survey Licence No. 100021290 EUL. Keywords O. Wakefield, C. N. Waters and N. J. P Smith Report; Stratigraphy, Carboniferous, East Irish Sea. Front cover View of the Great Orme, Llandudno, North Wales, comprising thick carbonate platform successions typical of the Carboniferous Limestone Supergroup of the Irish Sea and adjacent areas (P007274). ©BGS NERC Bibliographical reference Wakefield, O. Waters, C.N. and Smith, N.J.P. 2016. Carboniferous stratigraphical correlation and interpretation in the Irish Sea. British Geological Survey Commissioned Report, CR/16/040. 82pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is -
9 Carboniferous: Extensional Basins, Advancing Deltas and Coal Swamps
Carboniferous: extensional 9 basins, advancing deltas and coal swamps C. N. WATERS & S. J. DAVIES The structural evolution of England and Wales during the Trough and Widmerpool Gulf of the East Midlands (Fig. 9.4), Carboniferous was primarily a consequence of an oblique the Craven Basin of Lancashire and Harrogate Basin of (dextral) collision between Gondwana and Laurussia (Warr Yorkshire, formed connected narrow embayments. The inter- 2000). Several phases can be recognized. The Rhenohercynian vening platforms include the linked East Midlands Shelf and Ocean opened during Early–Mid Devonian regional back-arc Derbyshire High, the Holme High, Hathern Shelf and the transtension between Avalonia and Armorica (Fig. 9.1), possi- North Wales Shelf (Fig. 9.2). These platform areas represent the bly associated with northward-directed subduction along the northern margin of the Wales–Brabant High, which formed a southern margin of Armorica. A narrow seaway floored by persistent topographical feature throughout the Carboniferous. oceanic crust developed, extending across southwest England, Along the southern margin of the Wales–Brabant High there northern France and Germany. Cessation of the subduction, is a gradual change southward from a shelf in the South Wales associated with the Ligerian orogenic phase of central Europe, and Bristol region into a deep marine back-arc seaway of the resulted from the collision of the Iberian and Armorican Culm Basin of Cornwall and Devon (Fig. 9.2), that developed microplates (Fig. 9.1). During the Late Devonian, transpressive from the Late Devonian to Silesian times (see Chapter 10). closure of this restricted ocean, associated with the Bretonian By late Dinantian time the magnitude of regional N–S exten- orogenic phase, may have occurred in response to short-lived sion had greatly reduced. -
8. Hydrogeology and Land Contamination
Greenpark Energy Ltd April 2010 8. Hydrogeology and Land Contamination 8.1 Summary This chapter assessed the hydrogeological context of the proposed development together with possible impacts resulting from the development and considered the following key issues: The impact of the development on aquifers and groundwater located beneath the site; The impact of the development on nearby groundwater abstractions; Mitigation measures to be undertaken during site preparation, drilling and production and restoration of the site to prevent potential adverse impacts. This chapter also considered the current contamination status of the site and the potential for land contamination resulting from the proposed development and considers the following key issues: Potential contamination of land resulting from the proposed development; Mitigation measures to be undertaken during site preparation, drilling and production and restoration of the site to prevent potential adverse impacts. The site has variable shallow drift geology including glacial sand and gravel and glacial till to depths of between 0.9 and 2.6m below ground level. The solid geology below the site comprises strata of the Mercia Mudstone Group. The Mercia Mudstones overlie strata of the Triassic Sherwood Sandstone Group which comprises thick sandstones and is classified as a Major Aquifer by the Environment Agency; these strata extend up to approximately 300m in thickness in the area and are locally abstracted by Severn Trent Water for public potable supply. The Sherwood Sandstones lie unconformably above Upper Carboniferous Strata which include the Coal Measures Strata which are the target strata for the CBM gas development. The Coal Measures Strata are separated from the overlying Sherwood Sandstone by the Carboniferous Barren Measures Strata which are classified as a Minor Aquifer. -
Lct 5: Undulating Enclosed Farmland
LCT 5: UNDULATING ENCLOSED FARMLAND General Description This character type is defined by undulating topography and the associated small to medium scale enclosure into which it is divided. Key characteristics are the generally cohesive and un-fragmented historic landscape in the south of the borough, small woodlands, ponds and streams, nucleated rural villages and scattered farmsteads. Land use is mainly pasture. Away from main roads, railways and settlement the landscape is generally quiet and rural. Views within this type very much depend upon location and the nature of the immediate topography. There is a range of monuments from Bronze Age barrows to post medieval canal locks. The character type is found across a large part of the Cheshire West and Chester borough; to the east between Northwich and the Sandstone Ridge and in the south of the borough. Visual Character The location of this landscape type is reflected in the prevailing views which extend to adjacent character areas, either out over the low-lying plain or up towards the often dominant Sandstone Ridge. Roads typically follow the rolling topography, offering extensive views from high vantage points out over the immediate field pattern and extending to the high ground in the far distance such as the Pennines in the east. Long distance views are sometimes affected by large scale industrial works in adjacent areas. LCT 5: Undulating Enclosed Farmland 138 From low ground the landscape appears smaller in scale due to the increase in enclosure and the contained views where skylines are typically formed by hedgerow trees, woodland and farmsteads, with occasional electricity pylons and church spires. -
Engineering Geological Aspects of Embankment Dams on Mercia Mudstone
Engineering Geological Aspects of Embankment Dams on Mercia Mudstone Tim Blower, CEng, MICE, CGeol, FGS Outline of Presentation • Introduction • Lincoln case study • Initial studies into Mercia Mudstone • Site investigations • Research on historical dams • Observations • Lincoln case study - reprise Embankment Dams on Mercia Mudstone Introduction • Lincoln WTW Project • Promoters are ANGLIAN WATER • Forecast supply deficit of 20 Ml/d by 2035 in Lincoln area • Business Case solution is a new 20 Ml/d treatment works in the Lincoln area • To satisfy future demand growth in this area, but also to improve resilience (increasing demand further south) Embankment Dams on Mercia Mudstone Newton Cliff SAM RWR Raw water pipeline Treated water pipeline New Pumping Station Existing WTW New river intake New WTW RWR Lincoln WTW Project – Storage Reservoir • Earth fill embankment dam • Roughly oval shape • 10 days storage including outage time • Capacity 285,000m 3 • Earthworks volumes - cut & fill: 220,000m 3 Embankment Dams on Mercia Mudstone Desk Study • Project Constraints • Risk Areas • Planning the GI • Initial studies on the Mercia Mudstone • Walkover survey Embankment Dams on Mercia Mudstone General References on Mercia Mudstone • Chandler, R.J. & Forster, A (2001). Engineering in Mercia mudstone. CIRIA Report C570. • Hobbs, P.R.N. et. al. (2001). Engineering Geology of British Rocks and Soils - Mudstones of the Mercia Mudstone Group; BGS Research Report RR/01/02. • Howard, A.S. et.al. (2008). A Formational Framework for the Mercia Mudstone Group (Triassic) of England and Wales; BGS Research Report RR/08/04. Embankment Dams on Mercia Mudstone Outcrop of Mercia Mudstone 10 MM age from Mid Triassic (Anisian) to latest Triassic 9 (Rhaetian) 8 6 (241 – 205 mybp).