Multiple Matings, Effective Population Size And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Drosophila Sexual Attractiveness in Older Males Is Mediated by Their Microbiota
Article Drosophila Sexual Attractiveness in Older Males Is Mediated by Their Microbiota Chloe Heys 1,2, Anne Lizé 1,3, Zenobia Lewis 4,* and Tom A. R. Price 1 1 Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; [email protected] (C.H.); [email protected] (A.L.); [email protected] (T.A.R.P.) 2 Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK 3 UMR CNRS 6553, University of Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France 4 School of Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK * Correspondence: [email protected]; Tel.: +0151‐795‐4384 Received: 8 December 2019; Accepted: 22 January 2020; Published: 24 January 2020 Abstract: Age is well known to be a basis for female preference of males. However, the mechanisms underlying age‐based choices are not well understood, with several competing theories and little consensus. The idea that the microbiota can affect host mate choice is gaining traction, and in this study we examine whether the male microbiota influences female preference for older individuals in the fruit fly Drosophila pseudoobscura. We find that an intact microbiota is a key component of attractiveness in older males. However, we found no evidence that this decrease in older male attractiveness was simply due to impaired microbiota generally reducing male quality. Instead, we suggest that the microbiota underlies an honest signal used by females to assess male age, and that impaired microbiota disrupt this signal. This suggests that age‐based preferences may break down in environments where the microbiota is impaired, for example when individuals are exposed to naturally occurring antibiotics, extreme temperatures, or in animals reared in laboratories on antibiotic supplemented diet. -
The Effects of Marking Methodology on Mate Choice in Drosophila Melanogaster
ABC 2020, 7(4):492-504 Animal Behavior and Cognition DOI: https://doi.org/10.26451/abc.07.04.02.2020 ©Attribution 3.0 Unported (CC BY 3.0) PREREGISTERED REPORT The Effects of Marking Methodology on Mate Choice in Drosophila melanogaster Eirlys E. Tysall1, Matilda Q. R. Pembury Smith1*, and R. Tucker Gilman2 1Faculty of Biology, Medicine, and Health, University of Manchester 2Faculty of Science and Engineering; University of Manchester *Corresponding author (Email: [email protected]) Citation – Tysall, E. E., Pembury Smith, M. Q. R., & Gilman, R. T. (2020). The effects of marking methodology on mate choice in Drosophila melanogaster. Animal Behavior and Cognition, 7(4), 492-504. doi: https://doi.org/10.26451/abc.07.04.02.2020 Note: This paper is the final report based on an accepted peer-reviewed preregistered submission that can be found here. Abstract – Mate choice is an important source of sexual selection and a key driver of evolutionary processes including adaptation and speciation. Drosophila species have become an important model system for studying mate choice in the lab. Mate choice experiments often require the marking of individual flies to make those flies identifiable to experimenters, and several marking methods have been developed. All of these methods have the potential to affect mating behavior, but the effects of different marking methods have not been systematically quantified and compared. In this experiment, we quantified and compared the effects of five marking methods commonly used for Drosophila melanogaster: wing clipping, applying paint to the thorax, applying marker pen to the wing, dusting flies with fluorescent powder, and dyeing flies by allowing them to ingest food coloring. -
The Speciation History of Drosophila Pseudoobscura and Close
Copyright 0 1996 by the Genetics Society of America The Speciation history ofDrosophila Pseudoobscura and Close Relatives: Inferences from DNA Sequence Variation at the Period Locus Rong-Lin Wang' and Jody Hey Department of Biological Sciences, Rutgers University, Piscataway, NewJersey 08855-1 059 Manuscript received June 3, 1996 Accepted for publication August 3, 1996 ABSTRACT Thirty-five period locus sequences from Drosophila pseudoobscura and its siblings species, D. p. bogotana, D. persirnilis, and D.rniranda, were studied. A largeamount of variation was found within D. pseudoobscura and D.persirnilis, consistent with histories of large effective population sizes. D. p. bogotana, however, has a severe reduction in diversity. Combined analysis of perwith two other loci, in both D.p. bogotana and D. pseudoobscura, strongly suggest this reduction is due to recent directional selection at or near per within D.p. bogotana. Since D. p. bogotana is highly variable and shares variation with D.pseudoobscura at other loci, the low level of variation at perwithin D. p. bogotana can not be explained by a small effective population size or by speciation via founder event. Both D. pseudoobscura and D. persirnilis have consider- able intraspecific gene flow. A large portion of one D.persirnilis sequence appears to have arisen via introgression from D. pseudoobscura. The time of this event appears to be well after the initial separation of these two species. The estimated times since speciation are one mya for D. pseudoobscura and D. persirnilis and 2 mya since the formation of D. miranda. VOLUTIONARY biologists areconcerned with One of the best studied species groups includes Dro- E both the population genetic mechanisms behind sophila pseudoobscura and its close relatives:D. -
The Genetics of Drosophila Subobscura Populations
Heredity (1980), 45 (3) 335-350 0018-067X/80/0216 0335 $02.00 1980. The Genetical Society of Great Britain THEGENETICS OF DROSOPHILA SUBOBSCURA POPULATIONS XV.EFFECTIVE SIZE OF A NATURAL POPULATION ESTIMATED BY THREE INDEPENDENT METHODS MICHAEL BEGON*, COSTAS B. KRIMBASt, and MICHAEL LOUKASt * Department of Zoology, University of Liverpool, Liverpool L69 3BX, U.K; t Department of Genetics, Agricultural College of Athens, Votanikos, Athens, Greece Received27.ii.80 SUMMARY An estimate is presented of the effective size of a natural, Greek population of Drosophila subobscura, based on data on lethal allelism. It is compared with further estimates for the same population obtained from newly-reported data by the "temporal" and the "ecological" methods. The lethal allelism and ecological estimates both suggest that the population is extremely large and effectively infinite. The conclusions from the temporal method conform to this, with the exception of data from two loci: Est-5 and Aph. Directional selection at these loci is therefore suggested. Each method is described and explained, and their validity discussed. The results are compared with the few previous estimates of effective population size. 1. INTRODUCTION POPULATION genetics theories, in general, deal with "ideal" populations, which are closed, of constant size, have discrete generations, random mating (including seif-fertilisation at random), and a random distribution of family sizes. Effective population number, Ne—a concept developed by Wright (1931, 1938)—relates theory to practice, and, essentially, is the size of the ideal population with which an actual population can be equated genetically. Thus Wright (1969) described the estimation of Ne as ". -
Cytogenetic Mapping of Enzyme Loci on Chromosomes J and U of Drosophila Subobscura
Copyright 0 1984 by the Genetics Society of America CYTOGENETIC MAPPING OF ENZYME LOCI ON CHROMOSOMES J AND U OF DROSOPHILA SUBOBSCURA W. PINSKER AND D. SPERLICH Lehrstuhl fur Populationsgenetik, Institut fur Biologie 11, Universitat Tubingen, Auf der Morgenstelle 28, 0-7400Tubingen, Federal Republic of Germany Manuscript received April 24, 1984 Revised copy accepted July 20, 1984 ABSTRACT Enzyme loci located on chromosome J and U were mapped cytologically by means of a Y translocation technique. A linkage map of the two chromosomes was established in a parallel experiment and the recombination frequency in different regions of the chromosomes determined. A comparison of the cyto- genetic localization of the enzyme genes in D. subobscura and D. melanogaster indicates that many paracentric inversions must have taken place in the course of divergent evolution. However, no displacements of genes from one element to another due to pericentric inversions, reciprocal translocations or transpos- ing elements can be observed. In spite of the large number of structural rear- rangements that have occurred in the phylogeny of the genus Drosophila, gross similarities of banding pattern in homologous regions of the chromosomes of the two species become apparent. ITH the introduction of gel electrophoresis, enzyme loci have become W very important marker genes for population genetic studies. Allozyme variation has proved especially useful for the estimation of the amount of genetic variation and for the calculation of genetic relationship between pop- ulations, species and other taxa. In addition, a number of studies have been devoted to the search for nonrandom associations between alleles of different loci or linkage disequilibrium, maintained by selective forces favoring certain allele associations by epistatic interaction. -
Genetics of a Difference in Cuticular Hydrocarbons Between Drosophila Pseudoobscura and D
Genet. Res., Camb. (1996), 68, pp. 117-123 With 3 text-figures Copyright © 1996 Cambridge University Press 117 Genetics of a difference in cuticular hydrocarbons between Drosophila pseudoobscura and D. persimilis MOHAMED A. F. NOOR* AND JERRY A. COYNE Department of Ecology and Evolution, University of Chicago, Chicago, 1101 E. 57th Street, IL 60637, USA Summary We identify a fixed species difference in the relative Oyama, 1995). Indeed, in almost every insect species concentrations of the cuticular hydrocarbons 2-methyl studied, some cuticular hydrocarbons have been found hexacosane and 5,9-pentacosadiene in Drosophila to play a pheromonal role (Cobb & Ferveur, 1996). pseudoobscura and D. persimilis, and determine its Because these compounds are easily extracted and genetic basis. In backcross males, this difference is due quantified by gas chromatography, they are ideal for to genes on both the X and second chromosomes, genetic studies of reproductive isolation. Three prev- while the other two major chromosomes have no ious studies have found that hydrocarbon differences effect. In backcross females, only the second chromo- between closely related species were probably caused some has a significant effect on hydrocarbon pheno- by only one or a few loci (Grula & Taylor, 1979; type, but dominant genes on the X chromosome could Roelofs et al., 1987; Coyne et al., 1994). also be involved. These results differ in two respects Here we identify a difference in the predominant from previous studies of Drosophila cuticular hydro- cuticular hydrocarbons of the well-known sibling carbons: strong epistasis is observed between the species Drosophila pseudoobscura and D. persimilis, chromosomes that produce the hydrocarbon analyze its genetic basis, and evaluate its potential difference in males, and the difference is apparently effects on reproductive isolation. -
Rapid Evolution of Wing Size Clines in Drosophila Subobscura
Genetica 112–113: 273–286, 2001. 273 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Rapid evolution of wing size clines in Drosophila subobscura George W. Gilchrist1, Raymond B. Huey2 &Llu´ıs Serra3 1Department of Biology Box 5805, Clarkson University, Potsdam, NY 13699-5805, USA (Phone: 315-268- 2359; E-mail: [email protected]); 2Department of Zoology Box 351800, University of Washington, Seattle, WA 98195-1800, USA; 3Departamento de Gen`etica, Universidat de Barcelona, 08071 Barcelona, Spain Key words: clines, Drosophila subobscura, evolutionary rates, species introductions, wing size Abstract Parallel latitudinal clines across species and continents provide dramatic evidence of the efficacy of natural selec- tion, however little is known about the dynamics involved in cline formation. For example, several drosophilids and other ectotherms increase in body and wing size at higher latitudes. Here we compare evolution in an ancestral European and a recently introduced (North America) cline in wing size and shape in Drosophila subobscura.We show that clinal variation in wing size, spanning more than 15 degrees of latitude, has evolved in less than two decades. In females from Europe and North America, the clines are statistically indistinguishable however the cline for North American males is significantly shallower than that for European males. We document that while overall patterns of wing size are similar on two continents, the European cline is obtained largely through changing the proximal portion of the wing, whereas the North American cline is largely in the distal portion. We use data from sites collected in 1986/1988 (Pegueroles et al. 1995) and our 1997 collections to compare synchronic (divergence between contemporary populations that share a common ancestor) and allochronic (changes over time within a population) estimates of the rates of evolution. -
Drosophila Subobscura Short Sperm Have No Biochemical Incompatibilities with Fertilization Maria Enrica Pasini*
The Open Entomology Journal, 2010, 4, 25-29 25 Open Access Drosophila subobscura Short Sperm have no Biochemical Incompatibilities with Fertilization Maria Enrica Pasini* Università degli Studi di Milano, Dipartimento di Scienze Biomolecolari e Biotecnologie, Via Celoria, 26-20133 Milano, Italy Abstract: Drosophila obscura group species produce two distinct sizes of nucleated sperm that differ only in head and tail lenghts. Between both sperm there is no differences in location of the acrosome and flagellum during spermiogenesis where each sperm type develops in its own bundle. Fertile sperm accumulate in the seminal vesicles. Fertilization is ex- clusively monospermic and in a previous study we suggested that both types of sperm are fertilization-competent on the basis of similar DNA content and storage in females also if morph variations are consistent with a fertilization-related se- lection for optimal sperm size. This assumption is in agreement with previous studies that demonstrated that only long sperm fertilize eggs. In this study fertilization of Drosophila subobscura is examined using anti-sperm surface -N- acetylhexosaminidases and -L-fucosidase antibodies. Beta hexosaminidases are intrinsic proteins of the sperm plasma membrane in spermomomorphic species of the melanogaster group closely related to Drosophila melanogaster. These enzymes had been previously identified as putative receptors for glycoconjugates of the egg surface, structurally and func- tionally conserved. Here their localization has been investigated in Drosophila subobscura. Consistent with our previ- ous study, short and long sperm are functionally equivalent. More data are needed to clarify the consequences and adapta- tive significance of morph variations. Keywords: Drosophila, reproduction, sperm dimorphism, gametes. -
Drosophila</Em>
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2007-05-23 Molecular and Behavioral Analysis of Drosophila Circadian Photoreception and Circadian Thermoreception: A Dissertation Ania Busza University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research Commons, and the Enzymes and Coenzymes Commons Repository Citation Busza A. (2007). Molecular and Behavioral Analysis of Drosophila Circadian Photoreception and Circadian Thermoreception: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/ vwkf-gf69. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/343 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. A Dissertation Presented By Ania Busza Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester, MA 01605 In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 23, 2007 Biomedical Sciences Program in Neuroscience ii Molecular and Behavioral Analysis of Drosophila Circadian Photoreception and Circadian Thermoreception A Dissertation Presented By Ania Busza Approved as to style and content by: William Schwartz, M.D., Chair of Committee Justin Blau, Ph.D., Member of Committee Michael Francis, Ph.D., Member of Committee Sean Ryder, Ph.D., Member of Committee David Weaver, Ph.D., Member of Committee Patrick Emery, Ph.D., Dissertation Mentor Anthony Carruthers, Ph.D., Dean of the Graduate School of Biomedical Sciences Ph.D. -
The Evolution of Prezygotic Reproductive Isolation in The
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 The evolution of prezygotic reproductive isolation in the Drosophila pseudoobscura subgroup Sheri Dixon Schully Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Schully, Sheri Dixon, "The ve olution of prezygotic reproductive isolation in the Drosophila pseudoobscura subgroup" (2005). LSU Doctoral Dissertations. 1001. https://digitalcommons.lsu.edu/gradschool_dissertations/1001 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE EVOLUTION OF PREZYGOTIC REPRODUCTIVE ISOLATION IN THE DROSOPHILA PSEUDOOBSCURA SUBGROUP A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Sheri Dixon Schully B.S., Louisiana State University, 2001 August 2005 DEDICATION I dedicate this dissertation to my parents, Lydia and Dale Dixon. My dad taught me the values of first-rate hard work. My mother has always made me feel that I could accomplish anything I put my mind and heart into. It has been her belief in me that has gotten me this far. ii ACKNOWLEDGEMENTS I would like to recognize and thank the people who made all of this work possible. First and foremost, I would like to express extreme gratitude to Mike Hellberg for his support and guidance. -
Finding New Clock Components: Past and Future
10.1177/0748730404269151JOURNALOFTakahashi / FINDING BIOLOGICALRHYTHMS NEW CLOCK COMPONENTS / October 2004 PERSPECTIVE Finding New Clock Components: Past and Future Joseph S. Takahashi1 Howard Hughes Medical Institute, Department of Neurobiology & Physiology, Northwestern University, Evanston, IL Abstract The molecular mechanism of circadian clocks has been unraveled pri- marily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. We are now in a position to consider what constitutes a clock component, whether we can establish criteria for clock components, and whether we have found most of the primary clock components. This perspective discusses clock genes and how genetics, molecular biology, and biochemistry have been used to find clock genes in the past and how they will be used in the future. Key words circadian clock components, clock genes, phenotype, forward genetics The modern era of “clock genetics” began in 1971 plete genome sequences for most of the important with the discovery by Ron Konopka and Seymour model organisms. Benzer (Fig. 1) of the period (per) locus in Drosophila In the circadian field, we have identified cell- (Konopka and Benzer, 1971). At the time, even the autonomous circadian pathways that share a con- existence of single-gene mutations affecting a process served transcriptional autoregulatory feedback mech- as complex as circadian rhythms was met with great anism across 2 domains of life (Dunlap, 1999; Young skepticism. The eminent phage geneticist, Max and Kay, 2001; Reppert and Weaver, 2002; Lowrey and Delbruck, is purported to have said, “No, no, no. It is Takahashi, 2004). And we can already anticipate that impossible,” when told of Konopka’s results. -
The Evolutionary History of Drosophila Thorax Length
Heredity 68 (1992) 557-563 Received 31 July 1991 Genetical Society of Great Britain The evolutionary history of Drosophila buzzatii. XXIV. Second chromosome inversions have differentaverage effects on thorax length ESTEBAN HASSON, JUAN J. FANARA, CONSTANTINA RODRIGUEZ, JUAN C. VILARDI*, OSVALDO A. REIG & ANTONIO FONTDEVI LA t GIBE Departamento de Ciencias BiolOgicas, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Ciudad Universitaria Pab. II, 1428 Buenos Aires, Argentina, *Laboratorio de Genética, Departamento de Ciencias B/old gicas, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina and tDepartmento de Genética y Microbiologia, Un/versidad AutOnoma de Barcelona, 08193 Bellaterra (Barcelona), Spain Wedemonstrate a genetic correlation between rearrangements of the second chromosome of D. buzzatii and thorax length, as a measure of body size. The results indicate that 2j and 2jz3 arrange- ments are correlated with large size, whereas 2st arrangement is correlated with small size. Some inversions (2st and 2jz3) show dominant effects and others (2j/f3) exhibit overdominance. These results show that at least 25 per cent of body size variation may be accounted for by the studied karyotypes. The possible integration of the genotypic, phenotypic and fitness levels, and also the possible implications to life-history evolution theories, are discussed. These results suggest that, under moderate to high heritability values, some kinds of chromosomal endocyclic and/or balancing selection may be valuable mechanisms for maintenance of body size variation. Keywords: bodysize, chromosomal inversions,Drosophila buzzatii, fitness, selection, life-history traits.. ness-related morphometric character that is easy to Introduction observe and measure.