Chapter 13 Noble-Gas Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13 Noble-Gas Chemistry CHAPTER 13 NOBLE-GAS CHEMISTRY Wojciech Grochala ICM, University of Warsaw, Pawińskiego 5a, 02106 Warsaw Poland and Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw Poland E-mail: [email protected] Leonid Khriachtchev and Markku Räsänen Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland E-mails: [email protected]; [email protected] Noble-gas chemistry was started in 1962 with the discovery of xenon hexafluoroplatinate followed with a number of compounds binding xenon or krypton. We highlight the classical and more exotic noble-gas compounds and discuss the nature of their bonding starting with strongly bound systems and progressing to weak interactions. Noble-gas hydrides with the common formula HNgY were found in 1995, which led later to the identification of the first argon compound HArF. The formation mechanism of noble-gas hydrides at low temperatures is described in detail followed with a model of bonding. The interactions of the noble- gas hydrides with their surroundings and with complexing molecules are discussed. The chapter ends with known and potential applications of noble gases and with challenges encountered. 1. Introduction The chemistry of noble gases began with a room temperature synthesis of the first xenon compound in the solid state, xenon hexafluoroplatinate 1 (XePtF6 ) by Neil Bartlett. The true and indeed very complex nature of the “XePtF6” compound was confirmed by experiments conducted nearly chapter 13.indd 419 1/27/2011 8:57:08 PM 420 W. Grochala, L. Khriachtchev, and M. Räsänen 40 years after the initial preparation.2 The history of the breaking of the inertness of the noble gases is certainly complex and fascinating, full of many misleading reports, surprises, and ingenuity.3 The chemical bonds between noble gas and other atoms are usually quite fragile due to various redox (electron-transfer) reactions. In consequence of that, the exploration of noble-gas chemistry constitutes a very good probe of the capabilities offered by low-temperature experimental techniques and also serves as an important incentive for their development. Low- temperature solid hosts have shown to be excellent to synthesize and identify novel species. For noble-gas containing species, soon after the breakthrough of Neil Bartlett, matrix isolation methods were applied to 4,5 produce noble-gas halides like KrF2, XeCl2, and XeClF. Matrix photolysis and thermal annealing of different small hydrides resulted in a puzzle by producing extremely strong unidentified absorptions in the mid-IR region. One characteristic example was the photolysis of HCl in Kr and Xe matrices.6 The first suggestion on the structure of these species came from the diatomics-in-ionic-systems (DIIS) simulation of 7 the HCl–Xen system made by Last and George. They have found that a charge-transfer structure of HXeCl appears to be stable. Such a structure was then verified by quantum chemical calculations, and a number of noble-gas hydrides of the common structure HNgY, where Ng = Ar, Kr, or Xe and Y is an electronegative atom or fragment, were predicted and experimentally characterized. The latest member of this family of molecules is doubly “xenonated” water, HXeOXeH.8 By the year 2009, the number of these molecules amounts 23 (see Table 1), including the first neutral chemical compound of argon, HArF.9 In this chapter on noble-gas chemistry, we present our understanding of the properties of noble-gas compounds made at ambient or cryogenic temperatures and describe some interesting predictions and challenges. As a shining example, we discuss in detail the noble-gas hydrides, their synthesis, properties, and complexation with other molecules in low- temperature matrices. Physics & Chemistry low temp Tact/11/PAN/001 Physics & Chemistry low temp Tact/11/PAN/001 chapter 13.indd 420 1/27/2011 8:57:08 PM Noble-Gas Chemistry 421 Table 1. Experimentally identified noble-gas hydride molecules by the year 2009. HXeH HXeI HXeBr HKrCl HXeCl HArF HKrF HKrCN HXeCN HXeNC HXeOH HXeO HXeOXeH HXeSH HXeNCO HKrCCH HXeCCH HKrCCCN HXeCCCN HXeCCXeH HXeCC HKrCCCCH HXeCCCCH 2. Noble-Gas Chemistry from Cryogenic to Ambient Temperatures 2.1. The ambient temperature regime: “Classical” noble-gas compounds and the nature of chemical bonding The seminal 1962 discoveries that noble gases are indeed reactive enough to form chemical bonds have resulted in an avalanche of novel compounds during the next 50 years. It is estimated that the number of noble-gas compounds reaches today about five hundred. The barely noticeable seed immediately sprouted and the myth of inertness collapsed. The chemical bonding in the multitude of novel species is hardly different from those observed in the first synthesized compounds. Indeed, it is mostly the fluoro- and oxo-connections of the heavier noble gases (Kr and Xe), which predominate this beautiful chemistry.10,11 Xenon shows reactivity similar to iodine and it forms compounds at oxidation states from (II), via (IV) and (VI), to (VIII); these are isoelectronic and most often isostructural with connections of I(I), I(III), Physics & Chemistry low temp Tact/11/PAN/001 Physics & Chemistry low temp Tact/11/PAN/001 chapter 13.indd 421 1/27/2011 8:57:09 PM 422 W. Grochala, L. Khriachtchev, and M. Räsänen Fig. 1. Classical picture of chemical bonding in XeF2 molecule. The Lewis (dot) diagram (left) and the molecular orbital picture of three-center four-electron bonding neglecting the s/p mixing (right). Similar diagrams may be drawn for tetragonal-planar XeF4 and for octahedral XeF6. I(V), and I(VII), respectively. The binary fluorides of xenon (XeF2, XeF4, and XeF6) are probably the best characterized of all the compounds of this element by both experiment and theory.12 Meticulous studies of Xe(VI)O3 and Xe(VIII)O4 have been limited by the explosive nature of these compounds, but the oxo-salts of xenon (perxenathes) such as Ba2Xe(VIII)O6 are thermally quite stable. XeF2 is one of the most stable chemical compounds of the noble gases; it forms soft molecular crystals (space group I4/mmm) and sublimes easily (even at room temperature) without decomposition. The Xe–F bond length is 1.974 Å in the gas phase and increases only slightly to 2.00 Å in the solid state. The most frequently drawn picture of the chemical bonding in XeF2 is that of 3-center 4-electron bonding (molecular orbital diagram in Fig. 1 accounts only for 5p orbitals of Xe and neglects 5s contribution). Both Xe–F bonds are equivalent in the linear symmetric XeF2 molecule. However, the occupied Xe–F bonding HOMO-1 orbital (su) and the unoccupied LUMO (also su) are prone to mixing with the occupied Xe–F nonbonding HOMO (sg) when a molecule is found in an asymmetric environment (otherwise mixing is symmetry-forbidden). Thus, the Xe–F bonds have substantially different lengths in the case of ionic [A–F–]…[XeF+] salts, where A represents a strong Lewis acid (SbF5, SO3, etc.). For example, the closest Xe–F separations are 1.84 and 2.35 Å for the [XeF][Sb2F11] salt. Physics & Chemistry low temp Tact/11/PAN/001 Physics & Chemistry low temp Tact/11/PAN/001 chapter 13.indd 422 1/27/2011 8:57:09 PM Noble-Gas Chemistry 423 Fig. 2. Illustration of the plasticity of the first coordination sphere of (left) Kr(II) for a few fluoro-connections, (middle) hypervalent Sb(III) and Sb(V) linked to iodine, and (right) Cu(II) in an oxide environment. The first- and second-order Jahn–Teller effects are responsible to various degrees for deformation of the first coordination sphere of the central cations. Reproduced with permission from Refs. 13–15. One interesting observation is that if one Xe–ligand bond strengthens, the other weakens and vice versa. All known chemical connections of noble gases exhibit the same characteristic feature as illustrated in Fig. 2 for selected fluoro-connections of krypton. The electron-rich Ng(II) cations exhibit substantial flexibility of the first coordination sphere in analogy with other “hypervalent” species as Sb(III), Sb(V), etc.14 Such behavior, sometimes referred to as distortion isomerism, is due to the second-order Jahn–Teller effect; it renders noble-gas species analogous to the odd–electron transition-metal cations such as Cu(II) (susceptible to the first-order Jahn–Teller effect, see Fig. 2).15 It is remarkable that the entire route from ideally symmetric to highly asymmetric hypervalent bonding may be encompassed by deliberate variation of one parameter only: the Lewis acidity.16 Thus, at least five distinct well-characterized phases exist in the phase diagram of the XeF2/XeF5AsF6 mixture, and each of them exhibits a more or less – … + pronounced dissociation of XeF2 into the ionic [A–F ] [XeF ] form, consistent with the acid/base ratio, for example: . 2XeF2 + XeF5 AsF6 → 2[XeF2] XeF5 AsF6, (1) 2[XeF2]×[XeF5 AsF6] + XeF5 AsF6 → 2{XeF2×[XeF5 AsF6]}, (2) {XeF2×[XeF5 AsF6]} + XeF5 AsF6 → [XeF2]×2[XeF5 AsF6]. (3) Physics & Chemistry low temp Tact/11/PAN/001 Physics & Chemistry low temp Tact/11/PAN/001 chapter 13.indd 423 1/27/2011 8:57:10 PM 424 W. Grochala, L. Khriachtchev, and M. Räsänen The more covalent bond between Xe and F in the XeF+ cation is of course appreciably stronger than the average hypervalent Xe–F bond for 16 symmetric XeF2. This observation gives a hint as to one possible strategy toward new stable noble-gas species. As we see later, attempts to avoid hypervalence of the noble-gas atom by designing a highly asymmetric ionic structure in fact bring us closer to the first chemical connections of helium (F–…HeO and related species). Finally, we note that an entire family of compounds is known that 17 contain XeF2 or XeF4 as molecular ligands for “naked” metal cations.
Recommended publications
  • Matrix-Isolation FTIR Study of Azidoacetone and Azidoacetonitrile M
    LOW TEMPERATURE PHYSICS VOLUME 29, NUMBER 9–10 SEPTEMBER–OCTOBER 2003 Matrix-isolation FTIR study of azidoacetone and azidoacetonitrile M. Frankowski,* B. S. Fox, A. M. Smith-Gicklhorn, M. K. Beyer, and V. E. Bondybey** Institute of Physical and Theoretical Chemistry, Technical University of Munich, Garching 85747, Germany M. Algarra and M. L. Costa CEFITEC, Department of Physics, Fac. Sciences and Technology, Universidade Nova de Lisboa, Caparica P-2829-516, Portugal P. Rodrigues and M. T. Barros CQFB, Department of Chemistry, Fac. Sciences and Technology, Universidade Nova de Lisboa, Caparica P-2829-516, Portugal M. N. D. S. Cordeiro REQUIMTE, Department of Chemistry, Fac. Sciences, Universidade do Porto, Porto 4169-007, Portugal Fiz. Nizk. Temp. 29, 1140–1146 ͑September–October 2003͒ Azidoacetonitrile (N3CH2CN) and azidoacetone (N3CH2COCH3) are studied by matrix-isolation FTIR spectroscopy in solid neon, argon, and nitrogen. The IR spectra calculated using the density-fuctional theoretical method are discussed in comparison with the experimental data. Significant broadening of the recorded azide bands indicate an awkward fit of these compounds into the solid environment. The strongest absorption is observed for both compounds in the regions of asymmetric and symmetric stretches of the N3 azide group. Strong band splittings in the N3 asymmetric stretch region can be most likely explained by very strong Fermi resonances with the CN stretch and combinations and overtones of the numerous lower- frequency vibrational modes. © 2003 American Institute of Physics. ͓DOI: 10.1063/1.1619361͔ INTRODUCTION EXPERIMENTAL Sample preparation Organic azides are useful reagents in many fields.1–3 Their strongly exothermic reactions make them useful as Azidoacetonitrile was synthesized from chloroacetoni- 4 propellants.
    [Show full text]
  • Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions
    J. Phys. Chem. A 2000, 104, 3655-3669 3655 Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions. 5. PAHs Incorporating a Cyclopentadienyl Ring† D. M. Hudgins,* C. W. Bauschlicher, Jr., and L. J. Allamandola NASA Ames Research Center, MS 245-6, Moffett Field, California 94035 J. C. Fetzer CheVron Research Company, Richmond, California 94802 ReceiVed: NoVember 5, 1999; In Final Form: February 9, 2000 The matrix-isolation technique has been employed to measure the mid-infrared spectra of the ions of several polycyclic aromatic hydrocarbons whose structures incorporate a cyclopentadienyl ring. These include the cations of fluoranthene (C16H10), benzo[a]fluoranthene, benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo- [k]fluoranthene (all C20H12 isomers), as well as the anions of benzo[a]fluoranthene and benzo[j]fluoranthene. With the exception of fluoranthene, which presented significant theoretical difficulties, the experimental data are compared to theoretically calculated values obtained using density functional theory (DFT) at the B3LYP/ 4-31G level. In general, there is good overall agreement between the two data sets, with the positional agreement between the experimentally measured and theoretically predicted bands somewhat better than that associated with their intensities. The results are also consistent with previous experimental studies of polycyclic aromatic hydrocarbon ions. Specifically, in both the cationic and anionic species the strongest ion bands typically cluster in the 1450 to 1300 cm-1 range, reflecting an order-of-magnitude enhancement in the CC stretching and CH in-plane bending modes between 1600 and 1100 cm-1 in these species. The aromatic CH out-of- plane bending modes, on the other hand, are usually modestly suppressed (e 2x - 5x) in the cations relative to those of the neutral species, with the nonadjacent CH modes most strongly affected.
    [Show full text]
  • Three Related Topics on the Periodic Tables of Elements
    Three related topics on the periodic tables of elements Yoshiteru Maeno*, Kouichi Hagino, and Takehiko Ishiguro Department of physics, Kyoto University, Kyoto 606-8502, Japan * [email protected] (The Foundations of Chemistry: received 30 May 2020; accepted 31 July 2020) Abstaract: A large variety of periodic tables of the chemical elements have been proposed. It was Mendeleev who proposed a periodic table based on the extensive periodic law and predicted a number of unknown elements at that time. The periodic table currently used worldwide is of a long form pioneered by Werner in 1905. As the first topic, we describe the work of Pfeiffer (1920), who refined Werner’s work and rearranged the rare-earth elements in a separate table below the main table for convenience. Today’s widely used periodic table essentially inherits Pfeiffer’s arrangements. Although long-form tables more precisely represent electron orbitals around a nucleus, they lose some of the features of Mendeleev’s short-form table to express similarities of chemical properties of elements when forming compounds. As the second topic, we compare various three-dimensional helical periodic tables that resolve some of the shortcomings of the long-form periodic tables in this respect. In particular, we explain how the 3D periodic table “Elementouch” (Maeno 2001), which combines the s- and p-blocks into one tube, can recover features of Mendeleev’s periodic law. Finally we introduce a topic on the recently proposed nuclear periodic table based on the proton magic numbers (Hagino and Maeno 2020). Here, the nuclear shell structure leads to a new arrangement of the elements with the proton magic-number nuclei treated like noble-gas atoms.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • A MATRIX ISOLATION SPECTROSCOPIC INVESTIGATION of the REACTION PRODUCTS of TRANSITION METAL CENTRES with ETHENE and WATER By
    A MATRIX ISOLATION SPECTROSCOPIC INVESTIGATION OF THE REACTION PRODUCTS OF TRANSITION METAL CENTRES WITH ETHENE AND WATER by MATTHEW G. K. THOMPSON A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada November 2007 Copyright © Matthew Gary Karl Thompson, 2007 Abstract The reaction products of thermally generated atomic V with ethene and ethene isotopomers have been investigated by matrix isolation ultraviolet visible and Fourier transform infrared (FTIR) spectroscopy. When V is deposited into matrices of pure Ar, evidence for V and V2 are present in the UV-visible absorption spectra. Addition of trace amounts of ethene results in the elimination of absorptions due to V2 on deposition, likely due to the formation of … V (C2H4) van der Waals complexes on matrix condensation. Irradiation of matrices containing V and trace C2H4 in Ar, with light corresponding to atomic V electronic excitations, eliminates all UV-visible absorptions due to atomic V in the matrix. Infrared analysis of matrices containing V and C2H4 give evidence for a new product on deposition, consistent with a kinetically formed H-V-C2H3 isomer. Following further irradiation of the matrix, several new products of C-H bond insertion by the metal atom, including additional H-V-C2H3 conformational 2 isomers, and H2V(η -C2H2) products are observed in the infrared spectrum. Additionally, the formation of ethane is evident as a major product immediately following deposition of V + C2H4 + H2O in Ar. The formation of this product is consistent with alkene insertion into the V-H bond of an H-V-OH intermediate, followed by a photo-induced elimination to give C2H6.
    [Show full text]
  • Noble Gases in the Earth and Its Atmosphere
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine Scholars' Mine Masters Theses Student Theses and Dissertations 1967 Noble gases in the earth and its atmosphere Robert Anthony Canalas Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Canalas, Robert Anthony, "Noble gases in the earth and its atmosphere" (1967). Masters Theses. 6875. https://scholarsmine.mst.edu/masters_theses/6875 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. NOBLE GASES IN THE EARTH AND ITS ATMOSPHERE BY ROBERT ANTHONY CANAIAS _ ,qtj6 - A 129523 THESIS submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the work required for the Degree of MASTER OF SCIENCE IN CHEMISTRY Rolla, Missouri Approved by ii ABSTRACT Abundances of noble gases extracted from Fig Tree Shale exhibit a marked deviation from the gas content of eclogitic rocks purported to be mantle material. The abundances of the heavy noble gases in shale were found to exceed the highest known meteoritic values. The abundances of the lighter noble gases were found to be comparable to the abundances of these gases in typical chondrites. Temperature gradient analyses show that excess heavy gases are released at low temperatures.
    [Show full text]
  • 3 Families of Elements
    Name Class Date CHAPTER 5 The Periodic Table SECTION 3 Families of Elements KEY IDEAS As you read this section, keep these questions in mind: • What makes up a family of elements? • What properties do the elements in a group share? • Why does carbon form so many compounds? What Are Element Families? Recall that all elements can be classified into three READING TOOLBOX categories: metals, nonmetals, and semiconductors. Organize As you read Scientists classify the elements further into five families. this section, create a chart The atoms of all elements in most families have the same comparing the different number of valence electrons. Thus, members of a family families of elements. Include examples of each family in the periodic table share some properties. and describe the common properties of elements in the Group number Number of valence Name of family family. electrons Group 1 1 Alkali metals Group 2 2 Alkaline-earth metals READING CHECK Groups 3–12 varied Transition metals 1. Identify In general, what Group 17 7 Halogens do all elements in the same family have in common? Group 18 8 (except helium, Noble gases which has 2) What Are the Families of Metals? Many elements are classified as metals. Recall that metals can conduct heat and electricity. Most metals can be stretched and shaped into flat sheets or pulled into wires. Families of metals include the alkali metals, the alkaline-earth metals, and the transition metals. THE ALKALI METALS READING CHECK The elements in Group 1 form a family called the 2. Explain Why are alkali alkali metals.
    [Show full text]
  • Chemical Activity of Noble Gases Kr and Xe and Its Impact on Fission Gas Accumulation in the Irradiated UO2 Fuel
    6TH INTERNATIONAL CONFERENCE ON WWER FUEL PERFORMANCE, MODELLING AND EXPERIMENTAL SUPPORT, 19 - 23 September 2005, Albena Congress Center, Bulgaria Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel. Marcin Szuta Institute of Atomic Energy, Otwock-Świerk 05-400, Poland, E-mail: [email protected] Abstract It is generally accepted that most of the insoluble inert gas atoms Xe and Kr produced during fissioning are retained in the fuel irradiated at a temperature lower than the threshold. Experimental data imply that we can assume that after irradiation exposure in excess of 1018 fissions/cm3 the single gas atom diffusion can be disregarded in description of fission gas behaviour. It is assumed that the vicinity of the fission fragment trajectory is the place of intensive irradiation induced chemical interaction of the fission gas products with UO2. Significant part of fission gas product is thus expected to be chemically bound in the matrix of UO2. From the moment of discovering the rare gases (helium, neon, argon, krypton, xenon and radon) at the end of XIX century until to the beginning of sixties years of XX century it was considered that the noble gases are chemically inactive. The nobility of rare gases started to deteriorate after when the first xenon compound was found by Barlett in 1962. Barlet showed that the noble gases are capable of forming what one could consider as normal chemical compounds, compelling chemists to readjust considerably their thinking regarding these elements. In a burst of activity in the years that followed, a number of compounds of noble gases have been reported.
    [Show full text]
  • Cologne Helix MC Plus Multi-Collector Noble Gas Mass Spectrometer for 3 Cosmogenic Neon Isotope Analysis
    https://doi.org/10.5194/gchron-2021-11 Preprint. Discussion started: 26 April 2021 c Author(s) 2021. CC BY 4.0 License. 1 Technical Note: Noble gas extraction procedure and performance of the 2 Cologne Helix MC Plus multi-collector noble gas mass spectrometer for 3 cosmogenic neon isotope analysis 4 Benedikt Ritter1*, Andreas Vogt1, Tibor J. Dunai1* 5 1 University of Cologne, Institute of Geology and Mineralogy, Zülpicher Straße 49b, Köln 50674, 6 Germany 7 *Corresponding authors 8 Benedikt Ritter – [email protected] 9 Tibor J. Dunai – [email protected] 10 Keywords: Noble Gas, Mass Spectrometry, Cosmogenic Nuclides 11 12 Abstract: 13 We established a new laboratory for noble gas mass spectrometry that is dedicated for the 14 development and application to cosmogenic nuclides at the University of Cologne (Germany). At 15 the core of the laboratory are a state-of-the-art high mass resolution multicollector Helix MCPlus 16 (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated 17 extraction line. The Mass-spectrometer is equipped with five combined Faraday Multiplier 18 collectors, with 1012 1013 pre-amplifiers for faraday collectors. We describe the extraction 19 line and the automizedΩ and operation Ω procedure for cosmogenic neon and the current performance of 20 the experimental setup. Performance tests were conducted using gas of atmospheric isotopic 21 composition (our primary standard gas); as well as CREU-1 intercomparison material, containing 22 a mixture of neon of atmospheric and cosmogenic composition. We use the results from repeated 23 analysis of CREU-1 to assess the performance of the current experimental setup at Cologne.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • The Periodic Table the Periodic Table
    The Periodic Table The Periodic Table We can find out LOTS of information about an element based on where it is on the periodic table! You will need 9 different colored pencils: Blue Orange Yellow Purple Red Green Light Green Light Blue Black (or your pencil!) 1 The Periodic Table 2 3 A horizontal row on the periodic table is a period. 4 5 Number the periods on your periodic table down the left side using numbers 1-7. There 7 periods. 6 7 A vertical column on the periodic table is a group (sometimes called a family) Each group is based on the electron configuration of that family. Within a family, elements have similar chemical 1 18 and physical characteristics. They will react, or 2 1314 15 16 17 behave, very similarly. Cl and Br react very similarly 3 4 5 6 7 8 9 10 1112 Ca and Be react very similarly. Number the groups starting on the far left with 1 and giving each group a number using 1-18. There are 18 groups or families on the periodic table. Staircase Draw a dark black zigzag line (staircase) to distinguish between metals, nonmetals, and metalloids Start by keeping B, Si, As, Te, and At to the RIGHT of the line and Al, Ge, Sb, and Po to the LEFT of the line. Staircase Nonmetals Along the line are the Metals metalloids Metals Found to the left of the zigzag line on the periodic table Usually silver-gray in color (except Cu and Au) Usually solid (except Hg, which is a liquid) Lustrous (shiny) appearance Malleable - can be bent or hammered flat Ductile - can be drawn into wire Good conductors of heat/electricity React with acids High melting point Most elements are metals (~80%) Other Metals Color the following elements to the LEFT of the zigzag LIGHT GREEN to show they are the other metals.
    [Show full text]