Entangled Quantum Cellular Automata, Physical Complexity, and Goldilocks Rules
Entangled quantum cellular automata, physical complexity, and Goldilocks rules Logan E. Hillberry,1, 2 Matthew T. Jones,1 David L. Vargas,1 Patrick Rall,3, 4 Nicole Yunger Halpern,4, 5, 6, 7 Ning Bao,4, 8 Simone Notarnicola,9, 10 Simone Montangero,10, 11, 12 and Lincoln D. Carr1 1Department of Physics, Colorado School of Mines, Golden, CO 80401, USA 2Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA 3Quantum Information Center, The University of Texas at Austin, Austin, TX 78712, USA 4Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA 5Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 6Department of Physics, Harvard University, Cambridge, MA 02138, USA 7Research Laboratory of Electronics, Massachusetts Institute of Technology,Cambridge, MA 02139, USA 8Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 9Dipartimento di Fisica e Astronomia, Universit`adegli Studi di Padova, I-35131 Italy 10Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Italy 11Dipartimento di Fisica e Astronomia, Universit`adegli Studi di Padova, I-35131 Italy 12Theoretische Physik, Universit¨atdes Saarlandes, D-66123 Saarbr¨ucken,Germany (Dated: May 18, 2020) Cellular automata are interacting classical bits that display diverse behaviors, from fractals to random-number generators to Turing-complete computation. We introduce entangled quantum cellular automata subject to Goldilocks rules, tradeoffs of the kind underpinning biological, social, and economic complexity. Tweaking digital and analog quantum-computing protocols generates persistent entropy fluctuations; robust dynamical features, including an entangled breather; and network structure and dynamics consistent with complexity.
[Show full text]