Patient Guide to Cardiothoracic Surgery Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Diagnosis of Pulmonic Stenosis by Means of Intracardiac Phonocardiography
Differential Diagnosis of Pulmonic Stenosis by Means of Intracardiac Phonocardiography Tadashi KAMBE, M.D., Tadayuki KATO, M.D., Norio HIBI, M.D., Yoichi FUKUI, M.D., Takemi ARAKAWA, M.D., Kinya NISHIMURA,M.D., Hiroshi TATEMATSU,M.D., Arata MIWA, M.D., Hisao TADA, M.D., and Nobuo SAKAMOTO,M.D. SUMMARY The purpose of the present paper is to describe the origin of the systolic murmur in pulmonic stenosis and to discuss the diagnostic pos- sibilities of intracardiac phonocardiography. Right heart catheterization was carried out with the aid of a double- lumen A.E.L. phonocatheter on 48 pulmonic stenosis patients with or without associated heart lesions. The diagnosis was confirmed by heart catheterization and angiocardiography in all cases and in 38 of them, by surgical intervention. Simultaneous phonocardiograms were recorded with intracardiac pressure tracings. In valvular pulmonic stenosis, the maximum ejection systolic murmur was localized in the pulmonary artery above the pulmonic valve and well transmitted to both right and left pulmonary arteries, the superior vena cava, and right and left atria. The maximal intensity of the ejection systolic murmur in infundibular stenosis was found in the outflow tract of right ventricle. The contractility of the infundibulum greatly contributes to the formation of the ejection systolic murmur in the outflow tract of right ventricle. In tetralogy of Fallot, the major systolic murmur is caused by the pulmonic stenosis, whereas the high ventricular septal defect is not responsible for it. In pulmonary branch stenosis, the sys- tolic murmur was recorded distally to the site of stenosis. Intracardiac phonocardiography has proved useful for the dif- ferential diagnosis of various types of pulmonic stenosis. -
Frater, Robert
Oral History Interview with Robert Frater Cardiothoracic Surgeon St. Jude’s Medical Center FDA Oral History Program Final Edited Transcript May 2003 Table of Contents Oral History Abstract ...................................................................................................................... 2 Keywords ........................................................................................................................................ 2 Citation Instructions ........................................................................................................................ 2 Interviewer Biography ..................................................................................................................... 3 FDA Oral History Program Mission Statement .............................................................................. 3 Statement on Editing Practices ....................................................................................................... 3 Index ............................................................................................................................................... 4 Interview Transcript ........................................................................................................................ 5 Robert Frater Oral History 1 Oral History Abstract This interview was conducted in an effort to collect background information on the development of cardiothoracic surgery and heart valve design and surgical implantation. Dr. Frater was a pioneer in the development -
Cardiac Amyloidosis and Surgery. What Do We Know About Rare
Cardiac amyloidosis and surgery. What do we know about rare diseases? Carlos Mestres1 and Mathias van Hemelrijck2 1University Hospital Zurich 2UniversitatsSpital Zurich May 3, 2021 Commentary to JOCS-2020-RA-1888 JOCS-2020-RA-1888 Cardiac amyloidosis in non-transplant cardiac surgery Cardiac amyloidosis and surgery. What do we know about rare diseases? Running Title: Cardiac amyloidosis and cardiac surgery Carlos { A. Mestres MD PhD FETCS1, 2, Mathias Van Hemelrijck MD1 1 - Clinic of Cardiac Surgery, University Hospital Zurich,¨ Zurich¨ (Switzerland) 2 - Department of Cardiothoracic Surgery, The University of the Free State, Bloemfontein, (South Africa) Word count (All): 1173 Word count (Text): 774 Key words : Cardiac amyloidosis, cardiac surgery, rare disease Correspondence: Carlos A. Mestres, MD, PhD, FETCS Clinic for Cardiac Surgery University Hospital Zurich,¨ R¨amistrasse 100 CH 8091 Zurich¨ (Switzerland) Email: [email protected] Rare diseases are serious, chronic and potentialy lethal. The European Union (EU) definition of a rare disease is one that affects fewer than 5 in 10,000 people (1). In the EU, these rare diseases are estimated to affect up to 8% of the roughly 500 million population (2). In the United States, a rare disease is defined as a condition affecting fewer than 200,000 people in the US (3). This a definition created by Congress in the Orphan Drug Act of 1983 (4). Therefore, the estimates for the US are that 25-30 million people are affected by a rare disease. There are more than 6000 rare diseases and 80% are genetic disorders diagnosed during childhood. Despite all community efforts, there are still a lack of an universal definition of rare diseases. -
Heart Valve Disease: Mitral and Tricuspid Valves
Heart Valve Disease: Mitral and Tricuspid Valves Heart anatomy The heart has two sides, separated by an inner wall called the septum. The right side of the heart pumps blood to the lungs to pick up oxygen. The left side of the heart receives the oxygen- rich blood from the lungs and pumps it to the body. The heart has four chambers and four valves that regulate blood flow. The upper chambers are called the left and right atria, and the lower chambers are called the left and right ventricles. The mitral valve is located on the left side of the heart, between the left atrium and the left ventricle. This valve has two leaflets that allow blood to flow from the lungs to the heart. The tricuspid valve is located on the right side of the heart, between the right atrium and the right ventricle. This valve has three leaflets and its function is to Cardiac Surgery-MATRIx Program -1- prevent blood from leaking back into the right atrium. What is heart valve disease? In heart valve disease, one or more of the valves in your heart does not open or close properly. Heart valve problems may include: • Regurgitation (also called insufficiency)- In this condition, the valve leaflets don't close properly, causing blood to leak backward in your heart. • Stenosis- In valve stenosis, your valve leaflets become thick or stiff, and do not open wide enough. This reduces blood flow through the valve. Blausen.com staff-Own work, CC BY 3.0 Mitral valve disease The most common problems affecting the mitral valve are the inability for the valve to completely open (stenosis) or close (regurgitation). -
Cardiac Surgery a Guide for Patients and Their Families Welcome to the Johns Hopkins Hospital
HEART AND VASCULAR INSTITUTE Cardiac Surgery A guide for patients and their families Welcome to The Johns Hopkins Hospital We are providing this book to you and your family to guide you through your surgical experience at the Johns Hopkins Heart and Vascular Institute. The physicians, nurses and other health care team members strive to provide you with the safest and best medical care possible. Please do not hesitate to ask your surgeon, nurse or other health care team member any questions before, during and after your operation. The booklet consists of two major sections. The first section informs you about the surgery and preparing for the hospital stay. The second section prepares you for the recovery period after surgery in the hospital and at home. TABLE OF CONTENTS Welcome to Johns Hopkins Cardiac Surgery 1 The Function of the Heart 2 Who’s Taking Care of You 3 Heart Surgery 4 Preparation for Surgery 5 Preoperative Testing and Surgical Consultation 7 The Morning of Surgery 9 After Surgery 10 Going Home After Cardiac Surgery 19 How We Help with Appointments and 24 Other Arrangements for Out-of-Town Patients Appendix 25 Looking back, it was the choice of my life. It’s not easy to put your heart in someone else’s hands. But for me, the choice was clear: I trusted it to Hopkins. My Heart. My Choice Patient Lou Grasmick, Founder & CEO, Louis J. Grasmick Lumber Company, Inc. Welcome to Johns Hopkins Cardiac Surgery The Johns Hopkins Hospital has a distinguished history of advancements in the treat- ment of cardiovascular diseases in adults and children, beginning with the Blalock-Taussig shunt in 1944. -
Cover Title Is Vesta Std Regular 48/52 with 45Pt After. 2020 Facility And
2020 Facility and Physician Cover title is Vesta Billing Guide Std Regular 48/52 Surgicalwith Heart Valve45pt Therapy after. Cover subtitle is Vesta Std Regular 18/22. Surgical Valve Repair and Replacement Procedures Physician Billing Codes Clinicians use Current Procedural Terminology (CPT)1 codes to bill for procedures and services. Each CPT code is assigned unique Relative Value Units (RVUs), which are used to determine payment by the Centers for Medicare & Medicaid Services (CMS) and other payers. Some commonly billed CPT codes used to describe procedures related to Edwards Lifesciences’ Heart Valve technologies are listed below.2 This list may not be comprehensive or complete. These procedures may be subject to the CMS multiple procedure reduction rule. When applicable, a payment reduction of 50% is applied to all payment amounts except the procedure with the greatest RVUs, which is paid at 100% unless exempt by CPT instructions or payer policy. Medicare National Average CPT Code Description Physician Payment3 Facility Setting Aortic 33390 Valvuloplasty, aortic valve, open, with cardiopulmonary bypass; simple $2,018 (ie, valvotomy, debridement, debulking, and/or simple commissural resuspension) 33391 Valvuloplasty, aortic valve, open, with cardiopulmonary bypass; complex $2,398 (eg, leaflet extension, leaflet resection, leaflet reconstruction, or annuloplasty) 33405 Replacement, aortic valve, open, with cardiopulmonary bypass; with prosthetic valve other $2,373 than homograft or stentless valve 33406 Replacement, aortic valve, open, -
General Pulmonology Track (August 7, 2014) Ballroom a & B
PCCP MIDYEAR CONVENTION August 7, 2014, Crowne Plaza Ballroom A&B General Pulmonology Track (August 7, 2014) Ballroom A & B Time Topic Topic 9:00- Spirometry, Lung volumes, DLCO, Ventilator waveforms 9:45 airway resistance, MVV interpretation interpretation John Clifford E. Aranas, MD, FPCCP Celeste Mae L. Campomanes, MD, FPCCP 9:45- CPET interpretation Non-invasive ventilation trouble shooting 10:30 May N. Agno, MD, FPCCP Newell R. Nacpil, MD, FPCCP 10:30- Perioperative Pulmonary Evaluation for Sleep Study interpretation 11:15 Virginia S. delos Reyes, MD, FPCCP Lung Resection Vincent M. Balanag, Jr., MD, FPCCP 11:15- Perioperative Management for Non-thoracic Imaging in Pulmonary Medicine 12:00 Joseph Leonardo Z. Obusan, MD, FPCR Surgery Abundio A. Balgos, MD, FPCCP 12:00- Luncheon Symposium Luncheon Symposium 1:30 1:30- Ventilator waveforms Spirometry, Lung volumes, DLCO, airway 2:15 interpretation resistance, MVV interpretation Albert L. Rafanan, MD, FPCCP Rachel Lee-Chua, MD, FPCCP 2:15- Non-invasive ventilation trouble CPET interpretation 3:00 shooting Josephine Blanco-Ramos, MD, FPCCP Jubert P. Benedicto, MD, FPCCP 3:00- Perioperative Pulmonary Evaluation Sleep Study interpretation 3:45 for Lung Resection Aileen Guzman-Banzon, MD, FPCCP Benilda B. Galvez, MD, FPCCP 3:45- Perioperative Management for Non- Imaging in Pulmonary Medicine 4:30 thoracic Surgery Maria Lourdes S. Badion, MD, FPCR Eileen G. Aniceto, MD, FPCCP LEARNING OBJECTIVES Spirometry, Lung volumes, DLCO, airway resistance, MVV interpretation 1. Specify the indications for pulmonary function testing. 2. Describe how the following pulmonary function tests are performed a. Spirometry i. lung volumes ii. DLCO iii. airway resistance iv. -
Anaesthesia for Cardiac Surgery Most Adult Heart Surgery in Australia and New Zealand Is Performed for Coronary Artery Disease and Heart Valve Disease
Anaesthesia for cardiac surgery Most adult heart surgery in Australia and New Zealand is performed for coronary artery disease and heart valve disease. Cardiac surgery is done under general anaesthesia, which means the patient is in a state of carefully controlled, medication-induced unconsciousness and will not respond to pain. It includes changes in breathing and circulation. In most cases, patients are admitted to hospital the day before surgery and undergo relevant investigations, such as blood tests and x-rays. Before the operation It is important that you speak to your doctor about whether you should stop eating and drinking before your anaesthetic. The anaesthetist will also need information such as: • Any recent coughs, colds or fevers. • Any previous anaesthetics or family problems with anaesthesia. • Abnormal reactions or allergies to drugs. • Any history of asthma, bronchitis, heart problems or other medical problems. • Any medications you may be taking. What to expect On the morning of the operation, patients may be given a “pre-med”, or medication to reduce anxiety; however, they will be conscious when they arrive at the operating theatre complex. All valve surgery and most coronary bypass surgery is performed on a non-beating heart. Because the body requires oxygen, which is carried by circulating blood, a machine temporarily takes over the function of the lungs and the heart to pump blood around the body. This machine is called a heart- lung machine or cardiopulmonary bypass machine. Specialist anaesthetists and cardiac perfusionists may work together to manage this machine during the operation. Some coronary artery bypass surgery is done without cardiopulmonary bypass. -
Regarding the SARS Cov-2 Pandemic
Guidance from the International Society of Heart and Lung Transplantation regarding the SARS CoV-2 pandemic REVISED: August 19, 2020 An international group of ISHLT members representing Infectious Diseases, Pulmonology, Cardiology, Cardiothoracic Surgery and Pharmacy was appointed by the Executive Board of the ISHLT to discuss frequently asked questions related to the current pandemic caused by SARS- CoV-2 (virus) causing the disease coronavirus disease 2019 (COVID-19). The group has met frequently to update this document as more data and experience become available. This guidance is pertinent to care providers of patients with chronic lung/ heart disease and transplant, mechanical circulatory support, and pulmonary vascular disease. NEW INFORMATION IN THIS REVISION: - updated donor and recipient selection for cardiothoracic transplant - lung transplant listing criteria for COVID-19 related acute respiratory distress syndrome CONTRIBUTORS: Chair: Saima Aslam Infectious Diseases: Lara Danziger-Isakov, Me-Linh Luong, Shahid Husain, Fernanda P. Silveira, Paolo Grossi Cardiology: Eric Adler, Marta Farrero, Maria Frigerio, Enrico Ammirati, Luciano Potena, Mandeep R. Mehra, Jeffrey Teuteberg, Raymond Benza Pulmonology: Are Holm, Federica Meloni, Lianne Singer, Erika Lease, Stuart Sweet, Christian Benden, Maria M. Crespo, Marie Budev, Peter Hopkins, Andrew Courtwright Cardiothoracic Surgery: Stephan Ensminger, Jan Gummert, Marcelo Cypel, Daniel Goldstein Pharmacy: Michael Shullo, Patricia Ging 1 INDEX 1. Risk factors and severity of COVID-19 Page 3 2. Reducing risk of infection with SARS-CoV-2 Pages 3-5 3. SARS-CoV-2 testing Page 5-6 4. Management of a patient with chronic lung/heart disease and Pages 6-8 transplant, mechanical circulatory support or pulmonary vascular disease with confirmed COVID-19 5. -
Variability in Anesthesia Models of Care in Cardiac Surgery
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 November 2020 doi:10.20944/preprints202010.0085.v2 Communication Variability in Anesthesia Models of Care In Cardiac Surgery Dianne McCallister 1, Bethany Malone 2 , Jennifer Hanna3, and Michael S Firstenberg 3,* 1 Diagnosis Well, Inc, Greenwood Village, Colorado, USA; [email protected]. 2 Department of Surgery, Summa Akron City Hospital, Akron, Ohio, USA; [email protected]. 3 Department of Cardiothoracic and Vascular Surgery, The Medical Center of Aurora, Aurora, Colorado, USA; [email protected]. * Correspondence: [email protected] Abstract: The operating room in a cardiothoracic surgical case is a complex environment, with multiple handoffs often required by staffing changes, and can be variable from program to program. This study was done to characterize what types of practitioners provide anesthesia during cardiac operations to determine the variability in this aspect of care. A survey was sent out via a list serve of members of the cardiac surgical team. Responses from 40 programs from a variety of countries showed variability across every dimension requested of the cardiac anesthesia team. Given that anesthesia is proven to have influence on the outcome of cardiac procedures, this study indicates the opportunity to further study how this variability influences outcomes, and to identify best practices. Keywords: Cardiothoracic Surgery; Anesthesia Staffing Models; Outcomes; Operating Room Staffing; Handoffs; Quality; Communication 1. Introduction The operating room is a complex environment, with multiple team members, many of whom may move on and off the team based on shifts and other factors. The use of handoffs is a common procedure that can be employed to try to create continuity of care. -
Progression of Tricuspid Regurgitation After Surgery for Ischemic Mitral Regurgitation
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL. 77, NO. 6, 2021 ª 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER Progression of Tricuspid Regurgitation After Surgery for Ischemic Mitral Regurgitation a, b, a a Philippe B. Bertrand, MD, PHD, * Jessica R. Overbey, DRPH, * Xin Zeng, MD, PHD, Robert A. Levine, MD, c d e f b Gorav Ailawadi, MD, Michael A. Acker, MD, Peter K. Smith, MD, Vinod H. Thourani, MD, Emilia Bagiella, PHD, Marissa A. Miller, DVM, MPH,g Lopa Gupta, MPH,b Michael J. Mack, MD,h A. Marc Gillinov, MD,i b b b j Gennaro Giustino, MD, Alan J. Moskowitz, MD, Annetine C. Gelijns, PHD, Michael E. Bowdish, MD, Patrick T. O’Gara, MD,k James S. Gammie, MD,l Judy Hung, MD,a on behalf of the Cardiothoracic Surgical Trials Network (CTSN) ABSTRACT BACKGROUND Whether to repair nonsevere tricuspid regurgitation (TR) during surgery for ischemic mitral valve regurgitation (IMR) remains uncertain. OBJECTIVES The goal of this study was to investigate the incidence, predictors, and clinical significance of TR pro- gression and presence of $moderate TR after IMR surgery. METHODS Patients (n ¼ 492) with untreated nonsevere TR within 2 prospectively randomized IMR trials were included. Key outcomes were TR progression (either progression by $2 grades, surgery for TR, or severe TR at 2 years) and presence of $moderate TR at 2 years. RESULTS Patients’ mean age was 66 Æ 10 years (67% male), and TR distribution was 60% #trace, 31% mild, and 9% moderate. Among 2-year survivors, TR progression occurred in 20 (6%) of 325 patients. -
Value of Perioperative Chest X-Ray for the Prediction of Sternal Wound Complications After Cardiac Surgery in High-Risk Patients: a “Work in Progress” Analysis
Journal of Clinical Medicine Article Value of Perioperative Chest X-ray for the Prediction of Sternal Wound Complications after Cardiac Surgery in High-Risk Patients: A “Work in Progress” Analysis Andrea Ardigò 1,†, Alessandra Francica 1,† , Gian Franco Veraldi 2, Ilaria Tropea 1, Filippo Tonelli 1, Cecilia Rossetti 1, Francesco Onorati 1,* and Giuseppe Faggian 1 1 Division of Cardiac Surgery, University of Verona Medical School, 37126 Verona, Italy; [email protected] (A.A.); [email protected] (A.F.); [email protected] (I.T.); fi[email protected] (F.T.); [email protected] (C.R.); [email protected] (G.F.) 2 Vascular Surgery Unit, University Hospital in Verona, 37126 Verona, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-045-8123307 † Authors equally contributed to the study and should be considered both as first Author. Abstract: Background. Sternal wound complications are serious events that occur after cardiac surgery. Few studies have investigated the predictive value of chest X-ray radiological measurements for sternal complications. Methods. Several perioperative radiological measurements at chest X-ray and clinical characteristics were computed in 849 patients deemed at high risk for sternal dehiscence (SD) or More than Grade 1 Surgical Site Infection (MG1-SSI). Multivariable analysis identified independent predictors, whilst receiver operating characteristics (ROC) curve analyses highlighted cut-off values of radiological measurements for the prediction of both complications. Results. SD occurred in 8.8% of the patients, MG1-SSI in 6.8%. Chronic obstructive pulmonary disease (COPD) was the only independent predictor for SD (Odds Ratio, O.R.