Clojure, Given the Pun on Closure, Representing Anything Specific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 4. Higher-Order Functions Functional Programming
Lecture 4. Higher-order functions Functional Programming [Faculty of Science Information and Computing Sciences] 0 I function call and return as only control-flow primitive I no loops, break, continue, goto I (almost) unique types I no inheritance hell I high-level declarative data-structures I no explicit reference-based data structures Goal of typed purely functional programming Keep programs easy to reason about by I data-flow only through function arguments and return values I no hidden data-flow through mutable variables/state [Faculty of Science Information and Computing Sciences] 1 I (almost) unique types I no inheritance hell I high-level declarative data-structures I no explicit reference-based data structures Goal of typed purely functional programming Keep programs easy to reason about by I data-flow only through function arguments and return values I no hidden data-flow through mutable variables/state I function call and return as only control-flow primitive I no loops, break, continue, goto [Faculty of Science Information and Computing Sciences] 1 I high-level declarative data-structures I no explicit reference-based data structures Goal of typed purely functional programming Keep programs easy to reason about by I data-flow only through function arguments and return values I no hidden data-flow through mutable variables/state I function call and return as only control-flow primitive I no loops, break, continue, goto I (almost) unique types I no inheritance hell [Faculty of Science Information and Computing Sciences] 1 Goal -
Higher-Order Functions 15-150: Principles of Functional Programming – Lecture 13
Higher-order Functions 15-150: Principles of Functional Programming { Lecture 13 Giselle Reis By now you might feel like you have a pretty good idea of what is going on in functional program- ming, but in reality we have used only a fragment of the language. In this lecture we see what more we can do and what gives the name functional to this paradigm. Let's take a step back and look at ML's typing system: we have basic types (such as int, string, etc.), tuples of types (t*t' ) and functions of a type to a type (t ->t' ). In a grammar style (where α is a basic type): τ ::= α j τ ∗ τ j τ ! τ What types allowed by this grammar have we not used so far? Well, we could, for instance, have a function below a tuple. Or even a function within a function, couldn't we? The following are completely valid types: int*(int -> int) int ->(int -> int) (int -> int) -> int The first one is a pair in which the first element is an integer and the second one is a function from integers to integers. The second one is a function from integers to functions (which have type int -> int). The third type is a function from functions to integers. The two last types are examples of higher-order functions1, i.e., a function which: • receives a function as a parameter; or • returns a function. Functions can be used like any other value. They are first-class citizens. Maybe this seems strange at first, but I am sure you have used higher-order functions before without noticing it. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Lecture 4 Resource Protection and Thread Safety
Concurrency and Correctness – Resource Protection and TS Lecture 4 Resource Protection and Thread Safety 1 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS This Lecture The Goals: 1) Understand the problem of contention of resources within a parallel application 2) Become familiar with the design principles and techniques to cope with it 3) Appreciate the advantage of non-blocking techniques The outline: § Threads and data races: synchronisation issues § Useful design principles § Replication, atomics, transactions and locks § Higher level concrete solutions 2 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS Threads and Data Races: Synchronisation Issues 3 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS The Problem § Fastest way to share data: access the same memory region § One of the advantages of threads § Parallel memory access: delicate issue - race conditions § I.e. behaviour of the system depends on the sequence of events which are intrinsically asynchronous § Consequences, in order of increasing severity § Catastrophic terminations: segfaults, crashes § Non-reproducible, intermittent bugs § Apparently sane execution but data corruption: e.g. wrong value of a variable or of a result Operative definition: An entity which cannot run w/o issues linked to parallel execution is said to be thread-unsafe (the contrary is thread-safe) 4 Danilo Piparo – CERN, EP-SFT Concurrency and Correctness – Resource Protection and TS To Be Precise: Data Race Standard language rules, §1.10/4 and /21: • Two expression evaluations conflict if one of them modifies a memory location (1.7) and the other one accesses or modifies the same memory location. -
An Evaluation of Go and Clojure
An evaluation of Go and Clojure A thesis submitted in partial satisfaction of the requirements for the degree Bachelors of Science in Computer Science Fall 2010 Robert Stimpfling Department of Computer Science University of Colorado, Boulder Advisor: Kenneth M. Anderson, PhD Department of Computer Science University of Colorado, Boulder 1. Introduction Concurrent programming languages are not new, but they have been getting a lot of attention more recently due to their potential with multiple processors. Processors have gone from growing exponentially in terms of speed, to growing in terms of quantity. This means processes that are completely serial in execution will soon be seeing a plateau in performance gains since they can only rely on one processor. A popular approach to using these extra processors is to make programs multi-threaded. The threads can execute in parallel and use shared memory to speed up execution times. These multithreaded processes can significantly speed up performance, as long as the number of dependencies remains low. Amdahl‘s law states that these performance gains can only be relative to the amount of processing that can be parallelized [1]. However, the performance gains are significant enough to be looked into. These gains not only come from the processing being divvied up into sections that run in parallel, but from the inherent gains from sharing memory and data structures. Passing new threads a copy of a data structure can be demanding on the processor because it requires the processor to delve into memory and make an exact copy in a new location in memory. Indeed some studies have shown that the problem with optimizing concurrent threads is not in utilizing the processors optimally, but in the need for technical improvements in memory performance [2]. -
Topic 6: Partial Application, Function Composition and Type Classes
Recommended Exercises and Readings Topic 6: Partial Application, • From Haskell: The craft of functional programming (3rd Ed.) Function Composition and Type • Exercises: • 11.11, 11.12 Classes • 12.30, 12.31, 12.32, 12.33, 12.34, 12.35 • 13.1, 13.2, 13.3, 13.4, 13.7, 13.8, 13.9, 13.11 • If you have time: 12.37, 12.38, 12.39, 12.40, 12.41, 12.42 • Readings: • Chapter 11.3, and 11.4 • Chapter 12.5 • Chapter 13.1, 13.2, 13.3 and 13.4 1 2 Functional Forms Curried and Uncurried Forms • The parameters to a function can be viewed in two different ways • Uncurried form • As a single combined unit • Parameters are bundled into a tuple and passed as a group • All values are passed as one tuple • Can be used in Haskell • How we typically think about parameter passing in Java, C++, Python, Pascal, C#, … • Typically only when there is a specific need to do • As a sequence of values that are passed one at a time • As each value is passed, a new function is formed that requires one fewer parameters • Curried form than its predecessor • Parameters are passed to a function sequentially • How parameters are passed in Haskell • Standard form in Haskell • But it’s not a detail that we need to concentrate on except when we want to make use of it • Functions can be transformed from one form to the other 3 4 Curried and Uncurried Forms Curried and Uncurried Forms • A function in curried form • Why use curried form? • Permits partial application multiply :: Int ‐> Int ‐> Int • Standard way to define functions in Haskell multiply x y = x * y • A function of n+1 -
Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of -
Functional Programming Lecture 1: Introduction
Functional Programming Lecture 13: FP in the Real World Viliam Lisý Artificial Intelligence Center Department of Computer Science FEE, Czech Technical University in Prague [email protected] 1 Mixed paradigm languages Functional programming is great easy parallelism and concurrency referential transparency, encapsulation compact declarative code Imperative programming is great more convenient I/O better performance in certain tasks There is no reason not to combine paradigms 2 3 Source: Wikipedia 4 Scala Quite popular with industry Multi-paradigm language • simple parallelism/concurrency • able to build enterprise solutions Runs on JVM 5 Scala vs. Haskell • Adam Szlachta's slides 6 Is Java 8 a Functional Language? Based on: https://jlordiales.me/2014/11/01/overview-java-8/ Functional language first class functions higher order functions pure functions (referential transparency) recursion closures currying and partial application 7 First class functions Previously, you could pass only classes in Java File[] directories = new File(".").listFiles(new FileFilter() { @Override public boolean accept(File pathname) { return pathname.isDirectory(); } }); Java 8 has the concept of method reference File[] directories = new File(".").listFiles(File::isDirectory); 8 Lambdas Sometimes we want a single-purpose function File[] csvFiles = new File(".").listFiles(new FileFilter() { @Override public boolean accept(File pathname) { return pathname.getAbsolutePath().endsWith("csv"); } }); Java 8 has lambda functions for that File[] csvFiles = new File(".") -
Notes on Functional Programming with Haskell
Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P. -
Currying and Partial Application and Other Tasty Closure Recipes
CS 251 Fall 20192019 Principles of of Programming Programming Languages Languages λ Ben Wood Currying and Partial Application and other tasty closure recipes https://cs.wellesley.edu/~cs251/f19/ Currying and Partial Application 1 More idioms for closures • Function composition • Currying and partial application • Callbacks (e.g., reactive programming, later) • Functions as data representation (later) Currying and Partial Application 2 Function composition fun compose (f,g) = fn x => f (g x) Closure “remembers” f and g : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) REPL prints something equivalent ML standard library provides infix operator o fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i)) fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i val sqrt_of_abs = Math.sqrt o Real.fromInt o abs Right to left. Currying and Partial Application 3 Pipelines (left-to-right composition) “Pipelines” of functions are common in functional programming. infix |> fun x |> f = f x fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt (F#, Microsoft's ML flavor, defines this by default) Currying and Partial Application 4 Currying • Every ML function takes exactly one argument • Previously encoded n arguments via one n-tuple • Another way: Take one argument and return a function that takes another argument and… – Called “currying” after logician Haskell Curry Currying and Partial Application 6 Example val sorted3 = fn x => fn y => fn z => z >= y andalso y >= x val t1 = ((sorted3 7) 9) 11 • Calling (sorted3 7) returns a closure with: – Code fn y => fn z -
Lecture Notes on First-Class Functions
Lecture Notes on First-Class Functions 15-411: Compiler Design Rob Simmons and Jan Hoffmann Lecture 25 Nov 29, 2016 1 Introduction In this lecture, we discuss two generalizations of C0: function pointers and nested, anonymous functions (lambdas). As a language feature, nested functions are a nat- ural extension of function pointers. However, because of the necessity of closures in the implementation of nested functions, the necessary implementation strategies are somewhat different. 2 Function pointers The C1 language includes a concept of function pointers, which are obtained from a function with the address-of operator &f. The dynamic semantics can treat &f as a new type of constant, which represents the memory address where the function f is stored. S; η ` (∗e)(e1; e2) B K −! S; η ` e B ((∗_)(e1; e2) ;K) S; η ` &f B ((∗_)(e1; e2);K) −! S; η ` e1 B (f(_; e2) ;K) Again, we only show the special case of evaluation function calls with two and zero arguments. After the second instruction, we continue evaluating the argu- ments to the function left-to-right and then call the function as in our previous dynamics. We do not have to model function pointers using a heap as we did for arrays and pointers since we are not able to change the functions that is stored at a given address. It is relatively straightforward to extend a language with function pointers, be- cause they are addresses. We can obtain that address at runtime by referring to the label as a constant. Any label labl in an assembly file represents an address in memory (since the program must be loaded into memory in order to run), and can LECTURE NOTES NOV 29, 2016 First-Class Functions L25.2 be treated as a constant by writing $labl. -
Java Concurrency in Practice
Java Concurrency in practice Chapters: 1,2, 3 & 4 Bjørn Christian Sebak ([email protected]) Karianne Berg ([email protected]) INF329 – Spring 2007 Chapter 1 - Introduction Brief history of concurrency Before OS, a computer executed a single program from start to finnish But running a single program at a time is an inefficient use of computer hardware Therefore all modern OS run multiple programs (in seperate processes) Brief history of concurrency (2) Factors for running multiple processes: Resource utilization: While one program waits for I/O, why not let another program run and avoid wasting CPU cycles? Fairness: Multiple users/programs might have equal claim of the computers resources. Avoid having single large programs „hog“ the machine. Convenience: Often desirable to create smaller programs that perform a single task (and coordinate them), than to have one large program that do ALL the tasks What is a thread? A „lightweight process“ - each process can have many threads Threads allow multiple streams of program flow to coexits in a single process. While a thread share process-wide resources like memory and files with other threads, they all have their own program counter, stack and local variables Benefits of threads 1) Exploiting multiple processors 2) Simplicity of modeling 3) Simplified handling of asynchronous events 4) More responsive user interfaces Benefits of threads (2) Exploiting multiple processors The processor industry is currently focusing on increasing number of cores on a single CPU rather than increasing clock speed. Well-designed programs with multiple threads can execute simultaneously on multiple processors, increasing resource utilization.