Fuzzy Logic in Agent-Based Game Design

Total Page:16

File Type:pdf, Size:1020Kb

Fuzzy Logic in Agent-Based Game Design Fuzzy Logic in Agent-Based Game Design Yifan Li, Petr Musilek and Loren Wyard-Scott Department of Electrical and Computer Engineering University of Alberta Edmonton, AB T6G 2V4, Canada yifan, musilek, [email protected] Abstract – The underlying artificial intelligence of computer classical rule-based systems often fail to attain subtlety, fuzzy games is constantly in need of improvement to meet the ever- rule-based systems allow the nuances among inputs to be increasing demands of game players. This paper discusses how captured and further reflected in the decisions at relatively low intelligent agents and fuzzy logic can help increase the quality computational cost. Compared to some other intelligent and amount of a computer game’s most important element: techniques, fuzzy rule-based systems are easy to design and interaction. The applications of fuzzy logic in behavior design are illustrated in detail through implementation of an arcade-style implement as well – they are very similar to the crisp rule- game. based systems, differing only in the approach used to partition the input space. As a natural extension of classical set logic, Keywords – Agent, BDI, Fuzzy Control, Combs, Game fuzzy logic is playing an increasingly important role in games. I. INTRODUCTION This paper provides an anatomy of how agent technology, incorporated with fuzzy logic, can be applied to game design. What is a computer game? In his influential book, The A brief introduction to the Belief-Desire-Intention (BDI) Art of Computer Game Design [1], Crawford identifies four agent theory and an overview of the BDI.net agent framework fundamental elements of computer games: representation, is provided in Section II. Section III closely examines interaction, conflict, and safety. A Game presents a virtual BattleCity.net, a re-implementation of an old arcade game. reality in which players enjoy interacting with the virtual Section IV outlines the extended framework and describes beings and taking challenges presented by the environment how fuzzy rule-based computing can be used to improve the without facing any physical risk. Of the four elements, perceived quality of computer games. Finally, Section V interaction is considered the most important. The advent of summarizes the conclusions and indicates the direction of computers has brought forward an unprecedented interactive future work. capability, making computer games truly different from conventional games. II. BACKGROUND Intelligent agents [2] and fuzzy logic [3] are two techniques that can help increase the quality of interaction in A. Software Agents games. Agents provide a new architecture of game design that leads to more flexible interaction, and fuzzy control affords a An agent theory defines the internals of agents. Among practical method for generating subtle behavior. the many theories surveyed in [2], the BDI model [4][5][6] is the most popular and influential. As defined in [2], an agent is an autonomous software entity that has its own goals, sensory inputs, reasoning, During the past decade, the BDI model has been well- reaction, and social ties. In the agent-oriented approach to studied and formalizations have been developed [7][8]. The game design, the game creatures are modeled as purposeful strong theoretical basis is supplemented by a number of ‘living’ entities. This approach bears multiple benefits: 1) the successful industrial applications ranging from early NASA distributed nature of the architecture facilitates the creation of projects [9] to more recent air-traffic management [10] and air complex system behaviors; 2) agents interact with each other combat simulation [11]. through high-level communication languages instead of rigid The BDI model is rooted in the philosophical work of low-level interfaces, making it simpler to manage large Bratman [12], which studies intention and its relation to other number of interactive behaviors; and, 3) when immersed in mental attitudes. As its name implies, BDI features three the virtual environment, players tend to perceive the virtual major mental attitudes as its building blocks - belief, desire, creatures as intelligent individuals; modeling them as such and intention: from the beginning helps to meet that expectation during later development stages. • Belief is the agent’s knowledge about its environment and itself. In the domain of games, fuzzy control is not just another • Desire describes the agent’s goal: a system state that the control method: it is a quality behavior generator. Creatures agent wants to achieve. with subtle behaviors enhance the perceived complexity, • Intention is the course of action that the agent has chosen enjoyableness and credibility of a virtual environment. While to achieve that goal. 0-7803-8376-1/04/$20.00 Copyright 2004 IEEE. Plan is another important element of the BDI model. A actually carried out. During execution, one plan may plan is a recipe of action for achieving a certain goal and is occasionally need to achieve a certain sub-goal that is beyond used to guide the deliberation process of the agents so they its capabilities to obtain. In such scenarios, the plan can need not search through the entire space of possible solutions stimulate a new desire which the agent will try to fulfill in a [13]. fashion similar to that described earlier. For the originating plan, the call is synchronous – it waits until the sub-goal is B. BDI.net achieved or believed unobtainable before devising further actions. BDI.net [14] is a Microsoft Visual C# [15] implementation of the AgentSpeak [16] BDI model. It is Communication is of paramount importance in any designed to be a lightweight framework for easy BDI serious agent application: without communication, it is almost implementation by casual programmers. This design impossible to exercise control over a multi-agent system, let philosophy leads to some favorable characteristics in alone collaborative problem-solving. Agent Communication comparison to the other existing BDI implementations, such Language (ACL) [21], along with content language and as UM-PRS [17], JACK [18], JAM [19], dMARS [7], and ontology specifications, is an enabling technology of agent ZEUS [20]. In particular, BDI.net offers the following communication. BDI.net implements the Foundation for advantages: Intelligent Physical Agents (FIPA) [22] agent communication language standards for message encoding, semantics and • Mainstream support and portability: BDI.net is written pragmatics. FIPA ACL is chosen over the equally popular using a popular programming language and work Knowledge Query and Manipulation Language (KQML) [23] seamlessly with all programming languages that support due to its formal semantics, support for XML (which is the .NET framework; relatively easy to parse), and other benefits such as • Better alignment with standard programming knowledge: specifications of interaction protocols. models can be described using common programming syntax rather than specialized symbolic logic; C. Fuzzy Rule-based Systems • Testability: BDI.net is designed with testability in mind, providing special facilities and considerations to aid the Fuzzy rule-based computing is the most widely used form debugging process; of fuzzy logic. A fuzzy rule-based systems is generally • Explicit communication support: facilities for agent composed of four components: 1) the fuzzifier converts the communication are built-in; and crisp inputs into fuzzy sets; 2) the rule base holds the relations • Tool library: apart from basic infrastructure, the between the inputs and the desired output, expressed as a framework implements many intelligent algorithms collection of IF-THEN rules; 3) the reasoning unit applies the (including fuzzy inference) ready for use by the inputs to the rules; 4) the defuzzifier converts the result of application programmers. reasoning back to crisp output values. A BDI.net agent operates through iterations of its In the case of multiple inputs, the antecedents of a fuzzy execution cycle as depicted in Fig. 1. rule are usually connected with the logical AND connective, Plan Instance Perceive and the rule base should cover every possible combination of A1 Intention Stack Create Intention Stack all linguistic terms defined on each input variable. This The best of the applicable Desires aroused plans is selected and Plan Instance A1 requirement of completeness leads to a combinatorial instantiated explosion of the rules: for a system of n inputs with m terms Add Intention Stack to Intention Library Applicable Plans n Desire A each, a total of m rules are needed. Combinatorial rule Plan A1 Intention explosion poses a severe problem for applying fuzzy control Plan A2 Library Select the best in game design as it complicates the design process and taxes intention for execution Find plan recipes that precious CPU resources. match the desire The matching plans are called Applicable Plans Execute the Combs has proposed the Union Rule Configuration (URC) Plan Recipe plan on Plan Instance X11 top of the [24][25] to alleviate the rule explosion problem. A typical Library Plan Instance X1 stack URC is expressed as follows: Fig. 1 BDI.net main execution cycle IF X1 IS A11 THEN Y IS B1 At the beginning of each cycle, the agent senses its OR IF X1 IS A12 THEN Y IS B2 environment and updates its belief. Consequently, desires may OR IF X IS A THEN Y IS B (1) arouse in response to the newly received stimulations. The 2 21 2 agent then matches its stock plans against the desires to find OR … out the best applicable plan for each desire (based on the OR IF Xi IS Aij THEN Y IS Bk plans’ fitness values) and initiates new intentions of execution. Where X denotes the input variables, Y denotes the Upon the end of the cycle, the intention that serves the most i output variable, and A and B denote the linguistic terms urgent desire is chosen from the intention library to be ij k defined on the fuzzy variables. Instead of presenting the relationship between the connected antecedents and the The first step is to decompose the system properly and consequent, the URC relates each input variable directly to the identify the agents.
Recommended publications
  • Does Informal Logic Have Anything to Learn from Fuzzy Logic?
    University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 3 May 15th, 9:00 AM - May 17th, 5:00 PM Does informal logic have anything to learn from fuzzy logic? John Woods University of British Columbia Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Woods, John, "Does informal logic have anything to learn from fuzzy logic?" (1999). OSSA Conference Archive. 62. https://scholar.uwindsor.ca/ossaarchive/OSSA3/papersandcommentaries/62 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: Does informal logic have anything to learn from fuzzy logic? Author: John Woods Response to this paper by: Rolf George (c)2000 John Woods 1. Motivation Since antiquity, philosophers have been challenged by the apparent vagueness of everyday thought and experience. How, these philosophers have wanted to know, are the things we say and think compatible with logical laws such as Excluded Middle?1 A kindred attraction has been the question of how truth presents itself — relatively and in degrees? in approximations? in resemblances, or in bits and pieces? F.H. Bradley is a celebrated (or as the case may be, excoriated) champion of the degrees view of truth. There are, one may say, two main views of error, the absolute and relative. According to the former view there are perfect truths, and on the other side there are sheer errors..
    [Show full text]
  • Decision Making: Fuzzy Logic
    First, a bit of history, my 1965 paper on fuzzy sets was motivated by my feeling that the then existing theories provided no means of dealing with a pervasive aspect of reality—unsharpness (fuzziness) of class boundaries. Without such means, realistic models of human-centered and biological systems are hard to construct. My expectation was that fuzzy set theory would be welcomed by the scientific communities in these and related fields. Contrary to my expectation, in these fields, fuzzy set theory was met with skepticism and, in some instances, with hostility. What I did not anticipate was that, for many years after the debut of fuzzy set theory, its Decision Making: main applications would be in the realms of engineering systems and consumer products. Fuzzy Logic … Underlying the concept of a linguistic variable is a fact which is widely unrecognized—a fact which relates to the 2018-03-15 concept of precision. Precision has two distinct meanings—precision in value and precision in meaning. The first meaning is traditional. The second meaning is not. The second meaning is rooted in fuzzy logic. -- Lotfi Zadeh, 2013 Questions (N-2) 1. What are the 2 most “complex” decision making techniques we’ve seen? 2. What are their strengths? Weaknesses? 3. What is the key (insight) to their success? 4. What does Planning have that (forward chaining) RBS do not? 5. When do we need a communication mechanism? 2 Questions (N-1) 1. Cooperative problem solving / distributed expertise is using h___ to d__ problems into smaller parts. 2. R__ experts rarely communicate/collaborate.
    [Show full text]
  • Fuzzy Logic Control for Stand-Alone Photovoltaic Energy Conversion
    Fuzzy Logic Control for Stand-alone Photovoltaic Energy Conversion System, and Innovation in Renewable Energy By Zainab Almukhtar A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Technology Entrepreneurship and Innovation June 29, 2016, Halifax, Nova Scotia Copyright Zainab Almukhtar, 2016 Approved: Dr. Adel Merabet Supervisor Division of Engineering Approved: Dr. Claudia De Fuentes Supervisory Committee Member Management Department, Sobey School of Business Approved: Dr. Rasheed Beguenane External Examiner ECE, Royal Military College Date: June 29th, 2016 Fuzzy Logic Control for Stand-alone Photovoltaic Energy Conversion System, and Innovation in Renewable Energy. by Zainab Almukhtar Abstract In this dissertation, simulation and hardware emulation was implemented to experiment the operation of a power regulation system for stand-alone PV system with DC loads using Fuzzy Logic Control (FLC). The system encompasses the functions of Maximum Power Point Tracking (MPPT) to bring the power to the maximum value, load power regulation and control of battery operation. An algorithm that tracks the maximum power, and the corresponding fuzzy logic controller were developed. An improved method for the battery operation regulation including a fuzzy logic controller was applied. Load voltage regulation was achieved by a modified cascaded PI controller. The power regulation system managed to stabilize the load power, proved fast MPPT tracking and regulation of the battery operation in the presence of fluctuations and fast input variations. The work included a study of the importance of university-industry collaboration to innovation in renewable energy. The current collaboration channels and the contribution of the current work was analysed through a questionnaire directed to the supervisor.
    [Show full text]
  • The Use of Fuzzy Logic for Artificial Intelligence in Games
    The use of Fuzzy Logic for Artificial Intelligence in Games Michele Pirovano1;2 1Department of Computer Science, University of Milano, Milano, Italy 2Dipartimento di Ingegneria Elettronica e Informazione, Politecnico di Milano, Italy December 7, 2012 Abstract Game AI, like all other aspects of a videogame, exists to pro- pel the higher goal of a videogame: to be fun and entertain. In Game artificial intelligence (game AI) is the branch of other words, the motto of the game AI society is often thought videogame development that is concerned with empowering to be If the player cannot see it, why do it? [21]. The context games with the illusion of intelligence. Game AI borrows is however not so simple nowadays, as partly due to successful many techniques from the broader field of AI, from simple fi- products that have brought forward advanced AI, partly due to nite state machines to state-of-the-art evolutionary algorithms. the ubiquitous online multi-player options that have changed Among these techniques, fuzzy logic is one of the tools that the habits of players, players are now more demanding in re- must be present in the arsenal of a good videogame AI de- gards to AI and more and more game developers have turned veloper, due to the simplicity of its formulation coupled with their attention from scripted and predictable agents to more its expressive power. In this paper, we introduce the field of human-like agents, capable of learning and thus, in the clas- game AI and review the use of fuzzy logic in games, looking sical AI definition, intelligent.
    [Show full text]
  • Applications of Fuzzy Sets Theory
    Francesco Masulli Sushmita Mitra Gabriella Pasi (Eds.) Applications of Fuzzy Sets Theory 7th International Workshop on Fuzzy Logic and Applications, WILF 2007 Camogli, Italy, July 7-10, 2007 Proceedings 4u Springer Table of Contents Advances in Fuzzy Set Theory From Fuzzy Beliefs to Goals 1 Cilia da Costa Pereira and Andrea G.B. Tettamanzi Information Entropy and Co-entropy of Crisp and Fuzzy Granulations 9 Daniela Bianucci, Gianpiero Cattaneo, and Davide Ciucd Possibilistic Linear Programming in Blending and Transportation Planning Problem 20 Bilge Bilgen Measuring the Interpretive Cost in Fuzzy Logic Computations 28 Pascual Julian, Gines Moreno, and Jaime Penabad A Fixed-Point Theorem for Multi-valued Functions with an Application to Multilattice-Based Logic Programming 37 Jesus Medina, Manuel Ojeda-Aciego, and Jorge Ruiz-Calvino Contextualized Possibilistic Networks with Temporal Framework for Knowledge Base Reliability Improvement 45 Marco Grasso, Michele Lavagna, and Guido Sangiovanni Reconstruction of the Matrix of Causal Dependencies for the Fuzzy Inductive Reasoning Method . 53 Guido Sangiovanni and Michele Lavagna Derivative Information from Fuzzy Models 61 Paulo Salgado and Fernando Gouveia The Genetic Development of Uninorm-Based Neurons 69 Angelo Ciaramella, Witold Pedrycz, and Robertfi Tagliaferri Using Visualization Tools to Guide Consensus in Group Decision Making 77 Sergio Alonso, Enrique Herrera- Viedma, Francisco Javier Cabrerizo, Carlos Porcel, and A.G. Lopez-Herrera Reconstruction Methods for Incomplete Fuzzy Preference
    [Show full text]
  • A Thesis Entitled Kidney Compatibility Score Generation for a Donor – Recipient Pair Using Fuzzy Logic by Sampath Kumar Yella
    A Thesis entitled Kidney Compatibility Score Generation for a Donor – Recipient pair Using Fuzzy Logic by Sampath Kumar Yellanki Submitted to Graduate Faculty as partial fulfillment of the requirements for The Master of Science Degree in Engineering ___ _______________________________________ Dr. Devinder Kaur, Committee Chair __________________________________________ Dr. Michael Rees, M.D., Committee Member __________________________________________ Dr. Ezzatollah Salari, Committee Member __________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2012 Copyright 2012, Sampath Kumar Yellanki This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Kidney Compatibility Score Generation for a Donor – Recipient pair Using Fuzzy Logic by Sampath Kumar Yellanki Submitted to Graduate School as a partial fulfillment of the requirements for The Master of Science Degree in Engineering The University of Toledo December 2012 This thesis, proposes and implements a Fuzzy Logic based Hierarchical model to address the problem of filtering the donor recipient pairs by predicting a kidney compatibility score. Donor – Recipient pair incompatibility is one of the major problems encountered in Renal Transplantation. Kidney Paired Donation is a barter system where the pairs exchange the donor organs to overcome the disadvantage of incompatibility. Identification of such pairs requires a Kidney Transplant Surgeon to evaluate the compatibility of swapped pairs. Unfortunately, such incompatible pairs run into huge numbers which is a herculean task for a surgeon and can prone to human fatigue. This work presents a Hierarchical System developed based on Fuzzy Logic to determine the quality of a Kidney Transplant based on various input parameters.
    [Show full text]
  • Techniques for Developing Large Scale Fuzzy Logic Systems
    Techniques for Developing Large Scale Fuzzy Logic Systems Jon C. Ervin Sema E. Alptekin Apogee Research Group California Polytechnic State University Los Osos, CA 93402, USA San Luis Obispo, CA 93407, USA [email protected] [email protected] property of the formulation can quickly Abstract overwhelm available computing resources in even relatively modest sized applications. One In this paper, we describe various promising extension, Intuitionistic Fuzzy Logic techniques used to make Intuitionistic (IFL), can further exacerbate memory problems Fuzzy Logic Systems amenable to by effectively doubling the number of input operating on applications with large membership functions. Atanassov [1] introduced numbers of inputs. A rule reduction the notion of pairing non-membership functions technique known as Combs method is in IFL with the usual membership functions of combined with an automated tuning Fuzzy Logic. process based on Particle Swarm Optimization. A second stage of tuning A number of researchers have developed on rule weights results in improved techniques to mitigate the problem “exponential performance and further reduction in rule explosion” or “curse of dimensionality” the size of the rule-base. The entire through various means [8, 10, and 14], however, process has been developed to operate these methods generally tend to be complex and within the Matlab software limited to special cases. One promising environment. The technique is tested exception is a technique developed by William against the Wisconsin Breast Cancer Database. The use of these tools shows Combs that changes the problem from one of an great promise in significantly exponential dependence to a linear dependence expanding the range and complexity of on the number of inputs [4].
    [Show full text]
  • Fuzzy Systems, IEEE Transactions On
    368 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. 3, JUNE 1999 Correspondence Will the Real Iris Data Please Stand Up? TABLE I THE IRIS DATA:FISHER [2] James C. Bezdek, James M. Keller, Raghu Krishnapuram, Ludmila I. Kuncheva, and Nikhil R. Pal Abstract—This correspondence points out several published errors in replicates of the well-known Iris data, which was collected in 1935 by Anderson [1], but first published in 1936 by Fisher [2]. Index Terms—Iris data. I. INTRODUCTION AND CONCLUSIONS While preparing Kuncheva and Bezdek [3], these authors discov- ered that there are (at least) two distinct published replicates of the Iris data that have been used as a basis for an unknown number of papers. Subsequently, Bezdek et al. [4] discovered two different errors in the version of Iris available through the well-known University of California at Irvine (UCI) machine learning database. Reproduced below, from the preface of Bezdek et al. [4] is an account of the problems errors like this cause. The data: Most of the numerical examples (in [4]) use small data sets that may seem contrived to you—and some of them are. There is much to be said for the pedagogical value of using a few points in the plane when studying and illustrating properties of various models. On the other hand, there are certain risks too. Sometimes conclusions that are legitimate for small specialized data sets become invalid in the face of large numbers of samples, features and classes. And, of course, time and space complexity make their presence felt in very unpredictable ways as problem size grows.
    [Show full text]
  • What Does Urban Transformation Look Like? Findings from a Global Prize Competition
    sustainability Communication What Does Urban Transformation Look Like? Findings from a Global Prize Competition Anne Maassen * and Madeleine Galvin World Resources Institute, 10 G Street NE, Washington, DC 20002, USA * Correspondence: [email protected] Received: 14 June 2019; Accepted: 21 August 2019; Published: 27 August 2019 Abstract: Different disciplines are grappling with the concept of ‘urban transformation’ reflecting its planetary importance and urgency. A recent systematic review traces the emergence of a normative epistemic community that is concerned with helping make sustainable urban transformation a reality. Our contribution to this growing body of work springs out of a recent initiative at the World Resources Institute, namely, the WRI Ross Prize for Cities, a global award for transformative projects that have ignited sustainable changes in their city. In this paper we explain the competition-based approach that was used to source transformative initiatives and relate our findings to existing currents in urban transformation scholarship and key debates. We focus on one of the questions at the heart of the normative urban transformation agenda: what does urban transformation look like in practice? Based on an analysis of the five finalists, we describe urban transformation as encompassing a plurality of contextual and relative changes, which may progress and accelerate positively, or regress over time. An evaluative approach that considers varying ‘degrees’ and ‘types’ of urban transformation is proposed to establish meaning within single cases and across several cases of urban transformation. Keywords: urban; transformation; urbanization; research; interdisciplinary; transitions; systemic change 1. Introduction There has been a lively debate among urban scholars and practitioners about the potential and mechanisms of ‘urban transformation’.
    [Show full text]
  • Resume on “Reply of William E. Combs About the Article of Jerry M
    Resume on “Reply of William E. Combs about the article of Analogously we can divide the consequent in three single Jerry M. Mendel and Qilian Liang” by Wilmer Garzón A input/output fuzzy rules: IF Humidity is Low THEN the Fan Speed is Low. IF Humidity is Average THEN the Fan Speed is Index Terms – Combinatorial problem, Combs method, curse of dimensionality, intersection rule configuration (IRC) and union rule Moderate. configuration (URC). IF Humidity is High THEN the Fan Speed is High. As stated in [3], the Mamdani fuzzy reasoning method is I. INTRODUCTION comprised of two inference steps. This paper has how objective reply four points mentioned in the • “The IF … THEN fuzzy implication is defined as a paper or Mendel and Liang about Fuzzy Rule Configuration. conjunction (AND) of the antecedent and consequent; it is usually implemented as the MIN (∧) aggregating operator though other t-norms are possible.” • “The logical connective between the rules, ALSO, is II. DISCUSSION assumed to be a disjunction (OR). It is usually implemented as the MAX ( ) aggregating operator. We can also use other Reply to Point #1: Generalized Modus Ponens and . t-conorms.” With one example can be represented a system with two input and one output, they are talking about fan speed system, the inputs are Grouping the last six expressions as obtained: temperature and humidity and the output is fan speed; one intersection rule configuration is: IF temperature is cool THEN the fan speed is low OR IF Temperature is Hot and humidity is Low THEN IF humidity is low
    [Show full text]
  • M.Tech (Full Time) – KNOWLEDGE ENGINEERING Curriculum & Syllabus (2008-2009)
    M.Tech (Full Time) – KNOWLEDGE ENGINEERING Curriculum & Syllabus (2008-2009) Faculty of Engineering & Technology SRM University SRM Nagar, Kattankulathur – 603 203 S.R.M. UNIVERSITY SCHOOL OF COMPUTER SCIENCE & ENGINEERING M.Tech (Knowledge Engineering Curriculum & Syllabus (2008-2009) I SEMESTER Subject Code Subject Name L T P C Theory MA0533 Mathematical Foundations of Computer Science 3 0 0 3 CS0541 Artificial Intelligence & Intelligent Systems 3 0 3 4 CS0543 Knowledge Based System Design 3 2 0 4 CS0545 Data & Knowledge Mining 3 2 0 4 Elective – I 3 0 0 3 Total 15 4 3 18 II SEMESTER Subject Code Subject Name L T P C Theory CS0540 Semantic Web 3 2 0 4 CS0542 Knowledge Based Neural Computing 3 0 3 4 CS0544 Agent Based Learning 3 2 0 4 Elective – II 3 0 0 3 Elective – III* 3 0 0 3 Total 15 4 3 18 * Elective – III shall be an Inter Departmental (or) Inter School Elective III SEMESTER Subject Code Subject Name L T P C Theory 3 0 0 3 Elective –IV 3 0 0 3 Elective - V 3 0 0 3 Elective - VI 3 0 0 3 CS0550 Seminar 0 2 0 1 Practical CS0645 Project Phase - I 0 0 12 6 Total 9 2 12 16 IV SEMESTER Subject Code Subject Name L T P C CS0646 Project Phase - II 0 0 36 18 Total 0 0 36 18 TOTAL CREDITS TO BE EARNED : 70 1 Electives for First Semester Subject Code Subject Name L T P C CS0685 Multimedia Systems 3 0 0 3 CS0561 Geographical Information Systems 3 0 0 3 CS0563 Professional Studies 3 0 0 3 CS0553 Genetic Algorithms & Machine Learning 3 0 0 3 Electives for Second Semester Subject Code Subject Name L T P C CS0650 Pattern Recognition Techniques
    [Show full text]
  • Decision Making: Fuzzy Logic
    Decision Making: Fuzzy Logic 2016-06-28 Questions (N-3) 1. How can we describe decision making? 2. What do the algorithms we’ve seen share? 3. What are the dimensions we tend to assess? 4. FSMs/Btrees: ____ :: Planning : _____ 5. For the 2nd blank, we need m_____s. 6. When is reactive appropriate? Deliberative? 7. What is the ‘hot-potato’ passed around (KE)? 8. H______ have helped in most approaches. 9. Which approach should you use? Questions (N-2) 1. What are the 2 most “complex” decision making techniques we’ve seen? 2. What are their strengths? Weaknesses? 3. What is the key (insight) to their success? 4. What is typically necessary to support this insight (hint: used in Planning + RBS)? 5. What does Planning have that (forward chaining) RBS do not? 6. When do we need a communication mechanism? Questions (N-1) 1. Cooperative problem solving / distributed expertise is using h___ to d__ problems into smaller parts. 2. R__ experts rarely communicate/collaborate. 3. Three types of communication are… 4. The three main parts of a Blackboard are… 5. An Arbiter can be used to… enables a computer to reason about linguistic terms and rules in a way similar to humans FUZZY LOGIC 1. Cut two slices of bread medium thick. 2. Turn the heat on the griddle on high. 3. Grill the slices on one side until golden brown. 4. Turn the slices over and add a generous helping of cheese. 5. Replace and grill until the top of the cheese is slightly brown. 6. Remove, sprinkle on a small amount of black pepper, and eat.
    [Show full text]