Logging and Monitoring at Home Who Am I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implementing Cisco Cyber Security Operations
2019 CLUS Implementing Cisco Cyber Security Operations Paul Ostrowski / Patrick Lao / James Risler Cisco Security Content Development Engineers LTRCRT-2222 2019 CLUS Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Live Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space Webex Teams will be moderated cs.co/ciscolivebot#LTRCRT-2222 by the speaker until June 16, 2019. 2019 CLUS © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Agenda • Goals and Objectives • Prerequisite Knowledge & Skills (PKS) • Introduction to Security Onion • SECOPS Labs and Topologies • Access SECFND / SECOPS eLearning Lab Training Environment • Lab Evaluation • Cisco Cybersecurity Certification and Education Offerings 2019 CLUS LTRCRT-2222 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 Goals and Objectives: • Today's organizations are challenged with rapidly detecting cybersecurity breaches in order to effectively respond to security incidents. Cybersecurity provides the critical foundation organizations require to protect themselves, enable trust, move faster, add greater value and grow. • Teams of cybersecurity analysts within Security Operations Centers (SOC) keep a vigilant eye on network security monitoring systems designed to protect their organizations by detecting and responding to cybersecurity threats. • The goal of Cisco’s CCNA Cyber OPS (SECFND / SECOPS) courses is to teach the fundamental skills required to begin a career working as an associate/entry-level cybersecurity analyst within a threat centric security operations center. • This session will provide the student with an understanding of Security Onion as an open source network security monitoring tool (NSM). -
Securing Infrastructure-As-A-Service Public Clouds Using Security Onion
Securing Infrastructure-as-a-Service Public Clouds Using Security Onion MIKAIL, Abdullahi and PRANGGONO, Bernardi <http://orcid.org/0000-0002- 2992-697X> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/23927/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version MIKAIL, Abdullahi and PRANGGONO, Bernardi (2019). Securing Infrastructure-as-a- Service Public Clouds Using Security Onion. Applied System Innovation, 2 (1). Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Article Securing Infrastructure-as-a-Service Public Clouds Using Security Onion Abdullahi Mikail and Bernardi Pranggono * Department of Engineering and Mathematics, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; [email protected] * Correspondence: [email protected] Received: 17 December 2018; Accepted: 23 January 2019; Published: 30 January 2019 Abstract: The shift to Cloud computing has brought with it its specific security challenges concerning the loss of control, trust and multi-tenancy especially in Infrastructure-as-a-Service (IaaS) Cloud model. This article focuses on the design and development of an intrusion detection system (IDS) that can handle security challenges in IaaS Cloud model using an open source IDS. We have implemented a proof-of-concept prototype on the most deployed hypervisor—VMware ESXi—and performed various real-world cyber-attacks, such as port scanning and denial of service (DoS) attacks to validate the practicality and effectiveness of our proposed IDS architecture. -
Intrusion Detection Systems (IDS)
Intrusion Detection Systems (IDS) Adli Wahid Role of Detection in Security • Part of security monitoring o Violation of security policies o Indicators of compromise o Threat drive or Vulnerability driven o What’s happening on the network? • Rules o Detection is based on rules • Action • What do we do when detection happens? • Alert and Investigate • Drop / Block Perspective – Adversary Tactics and Techniques • Mitre Att&ck Framework https://attack.mitre.org • Tactics – what are the goals of the adversary? • Technique – how do they do it? • SubJect to: o Resources o Platforms • Can we used this knowledge for detection? o Observe Adversaries Behaviour o Techniques, Tactics and Procedures (TTPs) o Deploy in prevention, detection, response Your Adversaries Motives Infrastructure Targets Behaviour Your Assets Your Systems Reference: https://published-prd.lanyonevents.com/published/rsaus19/sessionsFiles/13884/AIR-T07-ATT%26CK-in-Practice-A-Primer-to-Improve-Your-Cyber-Defense-FINAL.pdf Reference: https://published-prd.lanyonevents.com/published/rsaus19/sessionsFiles/13884/AIR-T07-ATT%26CK-in-Practice-A-Primer-to-Improve-Your-Cyber-Defense-FINAL.pdf Making Your Infrastructure Forensics Ready • Detecting known or potentially malicious activities • Part of the incident response plan • If your infrastructure is compromised o Can you answer the questions: what happened and since when? o Can we ‘go back in time’ and how far back? • What information you you need to collect and secure? • Centralized logging Intrusion Detection Systems • An intrusion -
Cisco Router Block Wan Request
Cisco Router Block Wan Request Equalitarian Fletcher sometimes daggled any aftershock unchurch conceptually. Computational Felix never personifies so proficiently or blame any pub-crawl untunably. Precedential and unsupervised Scott outspoke while cephalic Ronny snag her midlands weak-mindedly and kotows unsafely. Can you help me? Sometime this edge can become corrupted and needs to be cleared out and recreated. Install and Tuning Squid Proxy Server for Windows. Developed powerful partnerships with each physical network address on wan request. Lot we need to wan request to establish a banner for each nic ip blocks java applets that you find yourself having different. Proxy will obscure any wan cisco require a banner for yourself inside network address in its child and password: select os of attacks? Authorized or https, follow instructions below and see if a cisco and share your isp and sends vrrp advertisements, surf a traveling businesswoman connects after migration done on. Iax trunk on vpn for ospf network devices and how will have three profiles to be found over time a routing towards internet security profile. Pfsense box blocks as your wan cisco router request cisco router block wan requests specifically for commenting. Centralize VLAN, outbound policy, firewall rules, configuration profiles and more in minutes. Uncheck block cisco router wan request check box displays detailed statistics: wan request through our go. Fragmentation is choppy and asa would be the cisco request to content; back of connect wan rules for outside world? Is to configure static content on the result in theory this may block cisco wan router request check out ping requests. -
USING LUA for DETECTION and MALWARE TRAFFIC ANALYSIS Dr Chris Wakelin, Senior Threat Analyst, Proofpoint November 2018
MOONSTRUCK: USING LUA FOR DETECTION AND MALWARE TRAFFIC ANALYSIS Dr Chris Wakelin, Senior Threat Analyst, Proofpoint November 2018 1 © 2018 Proofpoint, Inc. Introduction . “Lua” is Portuguese for “Moon” . Small extensible language . Considered “well-engineered” by experts : . “If you read ... you'll see that the Lua team were well aware of many developments in programming languages and were able to choose from among the best ideas. Most designers of popular scripting languages have been amateurs and have not been nearly so well informed ... Lua is superbly designed so that the pieces fit together very nicely, with an excellent power-to-weight ratio ... Lua is superbly engineered. The implementation is just staggeringly good ...” . Currently used in . Wireshark . Games (Angry Birds, Crysis, Far Cry, Gary’s Mod …) . etc. 2 © 2018 Proofpoint, Inc. Introduction . Lua(jit) scripting support added initially in September 2012 . After suggestion by Will Metcalf of Emerging Threats . Lua Output support added March 2014 . Lua flowvar support added in 2013 . but only viewable (logged) from December 2016 3 © 2018 Proofpoint, Inc. Lua vs LuaJIT . LuaJIT – Just-In-Time compiler for Lua . Stable version 2.0.5 . Ubuntu 16.04 LTS included 2.0.4 . Development – version 2.1beta3 (for 18 months …) . Included in Ubuntu 18.04 LTS though . Some caveats . Based on older Lua 5.1 . Latest Lua is version 5.4 . Need to pre-allocate buffers in Suricata . Probably best to stick to Lua 5.1 features 4 © 2018 Proofpoint, Inc. Lua/LuaJIT options Suricata “configure” options (pick one) --enable-lua Enable Lua support --enable-luajit Enable Luajit support suricata.yaml … # Luajit has a strange memory requirement, it's 'states' need to be in the # first 2G of the process' memory. -
AWS Site-To-Site VPN User Guide AWS Site-To-Site VPN User Guide
AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN User Guide AWS Site-to-Site VPN: User Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. AWS Site-to-Site VPN User Guide Table of Contents What is Site-to-Site VPN ..................................................................................................................... 1 Concepts ................................................................................................................................... 1 Working with Site-to-Site VPN ..................................................................................................... 1 Site-to-Site VPN limitations ......................................................................................................... 2 Pricing ...................................................................................................................................... 2 How AWS Site-to-Site VPN works ........................................................................................................ 3 Site-to-Site VPN Components ..................................................................................................... -
Downloads." the Open Information Security Foundation
Performance Testing Suricata The Effect of Configuration Variables On Offline Suricata Performance A Project Completed for CS 6266 Under Jonathon T. Giffin, Assistant Professor, Georgia Institute of Technology by Winston H Messer Project Advisor: Matt Jonkman, President, Open Information Security Foundation December 2011 Messer ii Abstract The Suricata IDS/IPS engine, a viable alternative to Snort, has a multitude of potential configurations. A simplified automated testing system was devised for the purpose of performance testing Suricata in an offline environment. Of the available configuration variables, seventeen were analyzed independently by testing in fifty-six configurations. Of these, three variables were found to have a statistically significant effect on performance: Detect Engine Profile, Multi Pattern Algorithm, and CPU affinity. Acknowledgements In writing the final report on this endeavor, I would like to start by thanking four people who made this project possible: Matt Jonkman, President, Open Information Security Foundation: For allowing me the opportunity to carry out this project under his supervision. Victor Julien, Lead Programmer, Open Information Security Foundation and Anne-Fleur Koolstra, Documentation Specialist, Open Information Security Foundation: For their willingness to share their wisdom and experience of Suricata via email for the past four months. John M. Weathersby, Jr., Executive Director, Open Source Software Institute: For allowing me the use of Institute equipment for the creation of a suitable testing -
IOS XR Attestation Trust Me, Or Trust Me Not?
IOS XR Attestation Trust me, or Trust me not? Dan Backman, Portfolio Architect @jonahsfo BRKSPG-1768 Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Events Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space BRKSPG-2415 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Agenda • Risks to the Network Infrastructure • Measuring and Validating Trust in Cisco IOS-XR routers • New commands for Trust Integrity Measurement in IOS XR • Building a Service to Report on Trust Evidence • Conclusion BRKSPG-2415 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 Trusted Platform “Integrity, not just security.” © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public “Network devices are ideal targets. Most or all organizational and customer traffic must traverse these critical devices.” Source: US-CERT Alert (TA18-106A) Original release date: April 16, 2018 “The Increasing Threat to Network Infrastructure Devices and Recommended Mitigations.” Source: US-CERT Alert (TA16-250A) Original release date: Sep 6, 2016 BRKSPG-2415 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 Growing Concerns for Service Providers Targeted attacks on Critical Infrastructure Impact on Economy Untrusted Locations Complex to Manage BRKSPG-2415 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 How do I know my device has not been compromised? What is Trustworthy and Why Does It Matter? To build a trustworthy platform The network infrastructure must be constructed on a platform of trustworthy technologies to ensure devices operating are authentic and can create verifiable evidence that they have not been altered. -
Glossaire Des Protocoles Réseau
Glossaire des protocoles réseau - EDITION LIVRES POUR TOUS - http://www.livrespourtous.com/ Mai 2009 A ALOHAnet ALOHAnet, également connu sous le nom ALOHA, est le premier réseau de transmission de données faisant appel à un média unique. Il a été développé par l'université d'Hawaii. Il a été mis en service en 1970 pour permettre les transmissions de données par radio entre les îles. Bien que ce réseau ne soit plus utilisé, ses concepts ont été repris par l'Ethernet. Histoire C'est Norman Abramson qui est à l'origine du projet. L'un des buts était de créer un réseau à faible coût d'exploitation pour permettre la réservation des chambres d'hôtels dispersés dans l'archipel d'Hawaï. Pour pallier l'absence de lignes de transmissions, l'idée fut d'utiliser les ondes radiofréquences. Au lieu d'attribuer une fréquence à chaque transmission comme on le faisait avec les technologies de l'époque, tout le monde utiliserait la même fréquence. Un seul support (l'éther) et une seule fréquence allaient donner des collisions entre paquets de données. Le but était de mettre au point des protocoles permettant de résoudre les collisions qui se comportent comme des perturbations analogues à des parasites. Les techniques de réémission permettent ainsi d'obtenir un réseau fiable sur un support qui ne l'est pas. APIPA APIPA (Automatic Private Internet Protocol Addressing) ou IPv4LL est un processus qui permet à un système d'exploitation de s'attribuer automatiquement une adresse IP, lorsque le serveur DHCP est hors service. APIPA utilise la plage d'adresses IP 169.254.0.0/16 (qu'on peut également noter 169.254.0.0/255.255.0.0), c'est-à-dire la plage dont les adresses vont de 169.254.0.0 à 169.254.255.255. -
Cisco Nexus 9000 Series NX-OS Fundamentals Configuration Guide, Release 6.X First Published: 2013-11-20 Last Modified: 2014-09-26
Cisco Nexus 9000 Series NX-OS Fundamentals Configuration Guide, Release 6.x First Published: 2013-11-20 Last Modified: 2014-09-26 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Securing Security Tools Suricon Ö.Wï
Securing Security Tools SuriCon ö.wÏ Pierre Chiìier [email protected] French National Information Security Agency ö.wÏ ANSSI ◮ Created on July Åth ö..R, theANSSI (FrenchNetwork and Information SecurityAgency)isthe national authorityfor the defense and the security of information systems. ◮ Under the authority of the Prime Minister ◮ Main missions are: ◮ prevention ◮ defense of information systems ◮ awareness-rising http://www.ssi.gouv.fr/en/ ANSSI Securing Security Tools ö/öÏ Securing Security Tools Objectives of this talk: ◮ Improving security of tools ◮ Not on small steps,but trying to solve problems ◮ Consider alternatives to common solutions ◮ Test our claims ANSSI Securing Security Tools é/öÏ What is a network IDS ? A device that ◮ monitors network for malicious activity ◮ does stateful protocol analysis ◮ raises alerts to the administrators ◮ has to be fast ANSSI Securing Security Tools ÿ/öÏ What is a network IDS ? From the security point of view, a NIDS is: ◮ exposed to malicious traíc ◮ running lots of protocols dissectors ◮ connected to the admin network ◮ coded for performance ANSSI Securing Security Tools ó/öÏ Root causes ◮ Bad speciícations ◮ when they exist ◮ Design complexity and attack surface ◮ Formats complexity ◮ Programming language ◮ Paradox: many security tools are not securely coded ◮ “I’ll íx it later” ◮ Infosec peopleconsidering it’s “not their job” ANSSI Securing Security Tools Ï/öÏ Mimimal solutions ◮ Finding vulns does not (really)help security! ◮ But it helps (raising awareness, demonstrating the -
Release 3.2Dev OISF
Suricata User Guide Release 3.2dev OISF Jun 07, 2017 Contents 1 What is Suricata 1 1.1 About the Open Information Security Foundation............................1 2 Installation 3 2.1 Source..................................................3 2.2 Binary packages.............................................4 2.3 Advanced Installation..........................................5 3 Command Line Options 7 3.1 Unit Tests.................................................9 4 Suricata Rules 11 4.1 Rules Introduction............................................ 11 4.2 Meta-settings............................................... 16 4.3 Header Keywords............................................ 20 4.4 Prefilter.................................................. 31 4.5 Payload Keywords............................................ 32 4.6 HTTP Keywords............................................. 51 4.7 Flow Keywords.............................................. 67 4.8 Flowint.................................................. 70 4.9 Xbits................................................... 72 4.10 File Keywords.............................................. 73 4.11 Rule Thresholding............................................ 75 4.12 DNS Keywords.............................................. 77 4.13 SSL/TLS Keywords........................................... 78 4.14 Modbus Keyword............................................ 81 4.15 DNP3 Keywords............................................. 82 4.16 ENIP/CIP Keywords..........................................