Impacts of Climate Change on Long Island Sound Salt Marshes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Salt Marsh Plants of Long Island Sound R
Connecticut College Digital Commons @ Connecticut College Bulletins Connecticut College Arboretum 2015 Bulletin No. 40: Salt Marsh Plants of Long Island Sound R. Scott aW rren Juliana Barrett Margaret Van Patten Follow this and additional works at: http://digitalcommons.conncoll.edu/arbbulletins Part of the Botany Commons, Environmental Studies Commons, and the Natural Resources and Conservation Commons Recommended Citation Warren, R. Scott; Barrett, Juliana; and Van Patten, Margaret, "Bulletin No. 40: Salt Marsh Plants of Long Island Sound" (2015). Bulletins. Paper 39. http://digitalcommons.conncoll.edu/arbbulletins/39 This Article is brought to you for free and open access by the Connecticut College Arboretum at Digital Commons @ Connecticut College. It has been accepted for inclusion in Bulletins by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. SALT MARSH PLANTS of Long Island Sound revised second edition To order additional copies of this publicaton, please contact: Connecticut Sea Grant 1080 Shennecossett Road Groron, CT 06340-6048 Tel. 860-405-9128 http://seagrant. ucon n.edu or Can necticut College Arboretum Box 5201 270 Mohegan Avenue New London, CT 06320 Tel. 860-439-5020 http://www. can ncoll.edul the-arboreeu m Long • -Island Sound SmGifutt Study Connecticut O ©20 15 Connecticut Sea Grant and Connecticut College Arboretum First edition published in 2009 CTSG-15·14 Salt Marsh Plants of Long Island Sound by R. Scott Warren, Juliana Barrett, and Margaret S. Van Patten Second edition Revised 2015 , Salt Marsh Plants of Long Island Sound Long . -
Great Marsh Hazard Atlas & Project Compendium
Great Marsh Hazard Atlas & Project Compendium Prepared by the National Wildlife Federation | June 2018 Great Marsh Hazard Atlas & Project Compendium June 2018 Prepared for: Town of Essex, Massachusetts 30 Martin Street Essex, MA 01929 and Massachusetts Office of Coastal Zone Management 251 Causeway Street, Suite 800 Boston, MA 02114-2136 Prepared by: National Wildlife Federation 11100 Wildlife Center Drive Reston, VA 20190 This document was produced with funding provided by the Massachusetts Office of Coastal Zone Management through their Coastal Community Resilience Grant Program. Cover photo © Abby Manzi/DeRosa Environmental Consulting, Inc. www.nwf.org Contents Introduction .............................................................................................................................................. 1 Hazard Atlas .............................................................................................................................................. 1 PHYSICAL ENVIRONMENT ........................................................................................................................ 2 BIOLOGICAL ENVIRONMENT .................................................................................................................... 3 Birds ...................................................................................................................................................... 3 Shellfish ................................................................................................................................................ -
L O U I S I a N A
L O U I S I A N A SPARROWS L O U I S I A N A SPARROWS Written by Bill Fontenot and Richard DeMay Photography by Greg Lavaty and Richard DeMay Designed and Illustrated by Diane K. Baker What is a Sparrow? Generally, sparrows are characterized as New World sparrows belong to the bird small, gray or brown-streaked, conical-billed family Emberizidae. Here in North America, birds that live on or near the ground. The sparrows are divided into 13 genera, which also cryptic blend of gray, white, black, and brown includes the towhees (genus Pipilo), longspurs hues which comprise a typical sparrow’s color (genus Calcarius), juncos (genus Junco), and pattern is the result of tens of thousands of Lark Bunting (genus Calamospiza) – all of sparrow generations living in grassland and which are technically sparrows. Emberizidae is brushland habitats. The triangular or cone- a large family, containing well over 300 species shaped bills inherent to most all sparrow species are perfectly adapted for a life of granivory – of crushing and husking seeds. “Of Louisiana’s 33 recorded sparrows, Sparrows possess well-developed claws on their toes, the evolutionary result of so much time spent on the ground, scratching for seeds only seven species breed here...” through leaf litter and other duff. Additionally, worldwide, 50 of which occur in the United most species incorporate a substantial amount States on a regular basis, and 33 of which have of insect, spider, snail, and other invertebrate been recorded for Louisiana. food items into their diets, especially during Of Louisiana’s 33 recorded sparrows, Opposite page: Bachman Sparrow the spring and summer months. -
Chapter 2 Delaware's Wildlife Habitats
CHAPTER 2 DELAWARE’S WILDLIFE HABITATS 2 - 1 Delaware Wildlife Action Plan Contents Chapter 2, Part 1: DELAWARE’S ECOLOGICAL SETTING ................................................................. 8 Introduction .................................................................................................................................. 9 Delaware Habitats in a Regional Context ..................................................................................... 10 U.S. Northeast Region ............................................................................................................. 10 U.S. Southeast Region .............................................................................................................. 11 Delaware Habitats in a Watershed Context ................................................................................. 12 Delaware River Watershed .......................................................................................................13 Chesapeake Bay Watershed .....................................................................................................13 Inland Bays Watershed ............................................................................................................ 14 Geology and Soils ......................................................................................................................... 17 Soils .......................................................................................................................................... 17 EPA -
New Insights Into the Phylogenetics and Population Structure of the Prairie Falcon (Falco Mexicanus) Jacqueline M
Doyle et al. BMC Genomics (2018) 19:233 https://doi.org/10.1186/s12864-018-4615-z RESEARCH ARTICLE Open Access New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus) Jacqueline M. Doyle1,2*, Douglas A. Bell3,4, Peter H. Bloom5, Gavin Emmons6, Amy Fesnock7, Todd E. Katzner8, Larry LaPré9, Kolbe Leonard10, Phillip SanMiguel11, Rick Westerman11 and J. Andrew DeWoody2,12 Abstract Background: Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely- related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. Results: We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. -
Community Structure and Food-Web Dynamics in Northeastern U.S
COMMUNITY STRUCTURE AND FOOD-WEB DYNAMICS IN NORTHEASTERN U.S. TIDAL MARSHES By Laura Kay Garey B.S. Truman State University, 2010 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) The Graduate School The University of Maine May 2017 Advisory Committee: Brian J. Olsen, Associate Professor, School of Biology and Ecology, Co-advisor Thomas P. Hodgman, Non-game Bird Biologist, Retired, Maine Department of Inland Fisheries and Wildlife, Co-advisor Hamish S. Greig, Assistant Professor, School of Biology and Ecology Adrienne I. Kovach, Assistant Professor, Department of Natural Resources and the Environment, University of New Hampshire COMMUNITY STRUCTURE AND FOOD-WEB DYNAMICS IN NORTHEASTERN U.S. TIDAL MARSHES By Laura Kay Garey Thesis Advisors: Dr. Brian J. Olsen and Thomas P. Hodgman An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) May 2017 Tidal marshes represent one of the most productive natural systems on the globe, but because they are so physiologically stressful, they have low species richness. Consequently, tidal marsh communities are relatively homogenous across large spatial scales. Within saltmarshes, scale-dependent processes and patterns can be identified with the reduction of variation in community dynamics due to low species turnover. I conducted two studies in tidal marshes along the northeastern U.S. coast to explore the abiotic and biotic factors that influence food-web dynamics and community structure. I explored the effect of temporal and spatial variables on community composition of tidal-marsh invertebrates. -
Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil
Journal of American Science, 2011;7(8) http://www.americanscience.org Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil Eid, M.A. Soil Science Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo, Egypt [email protected] Abstract: Using of halophyte species for heavy metal remediation is of particular interest since these plants are naturally present in soils characterized by excess of toxic ions, mainly sodium and chloride. In a pot experiment, three halophyte species viz. Sporobolus virginicus, Spartina patens (monocotyledons) and Atriplex nammularia (dicotyledon) were grown under two levels of heavy metals: 0 level and combinations of 25 mg Zn + 25 mg Cu + 25 mg Ni/kg soil. The three species demonstrated high tolerance to heavy metal salts in terms of dry matter production. Sporobolus virginicus reduced Zn, Cu, and Ni from soil to reach a level not significantly different from that of the untreated control soil. Similarly, Spartina patens significantly reduced levels of Zn and Cu but not Ni. Atriplex nummularia failed to reduced Zn, Cu and Ni during the experimental period (two months). Only Sporobolus virginicus succeeded to translocate Zn and Cu from soil to the aerial parts of the plant. The accumulation efficiency of Zn and Cu in aerial parts of Sporobolus virginicus was three and two folds higher than Spartina patens and around six and three times more than Atriplex nammularia for both metals, respectively. [Eid, M.A. Halophytic Plants for Phytoremediation of Heavy Metals Contaminated Soil. Journal of American Science 2011; 7(8):377-382]. (ISSN: 1545-1003). http://www.americanscience.org. -
Responses to Salinity of Spartina Hybrids Formed in San Francisco Bay, California (S
UC Davis UC Davis Previously Published Works Title Responses to salinity of Spartina hybrids formed in San Francisco Bay, California (S. alterniflora × foliosa and S. densiflora × foliosa) Permalink https://escholarship.org/uc/item/3bw1m53k Journal Biological Invasions, 18(8) ISSN 1387-3547 Authors Lee, AK Ayres, DR Pakenham-Walsh, MR et al. Publication Date 2016-08-01 DOI 10.1007/s10530-015-1011-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Responses to salinity of Spartina hybrids formed in San Francisco Bay, California (S. alterniflora × foliosa and S. densiflora × foliosa ) Alex K. Lee, Debra R. Ayres, Mary R. Pakenham-Walsh & Donald R. Strong Biological Invasions ISSN 1387-3547 Volume 18 Number 8 Biol Invasions (2016) 18:2207-2219 DOI 10.1007/s10530-015-1011-3 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing Switzerland. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Biol Invasions (2016) 18:2207–2219 DOI 10.1007/s10530-015-1011-3 INVASIVE SPARTINA Responses to salinity of Spartina hybrids formed in San Francisco Bay, California (S. -
Common High Grass Species
Common High Grass Species Phragmites australis Spartina alternaflora Spartina patens Juncus gerardii (only low marsh) Common Reed Cord Grass Sea Hay Black Grass Typha angustifolia/latifolia Puccinellia maritima Distichlis spicata Aster tenufolius Cattail Seashore Alkali Grass Spike/salt grass Perennial Salt Marsh Aster Agalinis maritime Limonium nashii Triglochin maritimum Solidago sempervirens Salt Marsh Gerardia Sea Lavender Seaside Arrow Grass Seaside Goldenrod Salt Marsh Morphology Low Marsh: The low marsh is located along the seaward edge of the salt marsh. It is usually flooded at every tide and exposed during low tide. It tends to occur as a narrow band along creeks and ditches, whereas the high marsh is more expansive and is flooded less frequently. The predominant plant species found in the low marsh is the tall form of Spartina alterniflora (smooth cordgrass). This species can reach a height of six feet and is very tolerant of daily flooding and exposure. High Marsh: The high marsh lies between the low marsh and the marsh’s upland border. It can be very expansive in some areas, sometimes extending hundreds of yards inland from the low marsh area. Soils in the high marsh are mostly saturated, and the high marsh is generally flooded only during higher than average high tides. Plant diversity is low (usually less than 25 species), with the dominant species being the grasses and rushes such as Spartina patens (salt hay grass), Distichlis spicata (spike grass), Juncus geradii (black grass), and the short form of Spartina alterniflora. Other plant species commonly found in the high marsh are Aster tenufolius (perennial salt marsh aster), and Limonium nashii (sea lavender) Pool/Panne: Pannes are shallow depressions located within the high marsh. -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299. -
Supporting Spartina
Running Head: Supporting Spartina Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus Alejandro Bortolus1,38, Paul Adam2, Janine B. Adams3, Malika L. Ainouche4, Debra Ayres5, Mark D. Bertness6, Tjeerd J. Bouma7, John F. Bruno8, Isabel Caçador9, James T. Carlton10, Jesus M. Castillo11, Cesar S.B. Costa12, Anthony J. Davy13, Linda Deegan14, Bernardo Duarte9, Enrique Figueroa11, Joel Gerwein15, Alan J. Gray16, Edwin D. Grosholz17, Sally D. Hacker18, A. Randall Hughes19, Enrique Mateos-Naranjo11, Irving A. Mendelssohn20, James T. Morris21, Adolfo F. Muñoz-Rodríguez22, Francisco J.J. Nieva22, Lisa A. Levin23, Bo Li24, Wenwen Liu25, Steven C. Article Pennings26, Andrea Pickart27, Susana Redondo-Gómez11, David M. Richardson28, Armel Salmon4, Evangelina Schwindt29, Brian R. Silliman30, Erik E. Sotka31, Clive Stace32, Mark Sytsma33, Stijn Temmerman34, R. Eugene Turner20, Ivan Valiela35, Michael P. Weinstein36, Judith S. Weis37 1 Grupo de Ecología en Ambientes Costeros (GEAC), Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), CONICET, Blvd. Brown 2915, Puerto Madryn (U9120ACD), Chubut, Argentina 2School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia 3Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to -
Biological Invasions: Biogeography and Multitrophic Interactions
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Biological Invasions: Biogeography and Multitrophic Interactions Warwick Allen Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Allen, Warwick, "Biological Invasions: Biogeography and Multitrophic Interactions" (2016). LSU Doctoral Dissertations. 2723. https://digitalcommons.lsu.edu/gradschool_dissertations/2723 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. BIOLOGICAL INVASIONS: BIOGEOGRAPHY AND MULTITROPHIC INTERACTIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Biological Sciences by Warwick James Allen B.Sc. (Hons.), Lincoln University, New Zealand, 2009 December 2016 ACKNOWLEDGEMENTS Many people have been invaluable to my professional and personal development during my time at Louisiana State University (LSU), but none more so than my advisor, Jim Cronin. He is a fountain of knowledge and generously gave his time, expertise, and support to all my endeavors. I will always be appreciative of the countless opportunities and experiences I have had as a result of Jim’s support and guidance - he has been a wonderful mentor and never failed to get the best out of me. Many thanks to my various committee members - Kyle Harms, Michael Stout, James Geaghan, John White, Erik Aschehoug, and Lawrence Rouse.