Abstract a Tannakian Description for Parahoric

Total Page:16

File Type:pdf, Size:1020Kb

Abstract a Tannakian Description for Parahoric ABSTRACT Title of dissertation: A TANNAKIAN DESCRIPTION FOR PARAHORIC BRUHAT-TITS GROUP SCHEMES Kevin Michael Wilson Jr., Doctor of Philosophy, 2010 Dissertation directed by: Professor Thomas Haines, Department of Mathematics Let K be a field which is complete with respect to a discrete valuation and let O be the ring of integers in K. We study the Bruhat-Tits building Be(G) and the parahoric Bruhat-Tits group schemes associated to a connected reductive split GFe linear algebraic group G defined over O. In order to study these objects we use the theory of Tannakian duality, devel- oped by Saavedra Rivano, which shows how to recover G from its category of finite rank projective representations over O. We also use Moy-Prasad filtrations in order to define lattice chains in any such representation. Using these two tools, we give a Tannakian description to Be(G). We also define a functor Aut associated to a facet F ⊂ (G) in terms of Fe e Be lattice chains in a Tannakian way. We show that Aut is representable by an affine Fe group scheme of finite type, has generic fiber G , and satisfies Aut (O ) = (O ) K Fe E GFe E for every unramified Galois extension E of K. Moreover, we show that there is a canonical morphism from to Aut , which GFe Fe we conjecture to be an isomorphism. We prove that it is an isomorphism when the residue characteristic of K is zero and G is arbitrary, when G = GLn and K is arbitrary, and when Fe is the minimal facet containing the origin and G and K are arbitrary. A TANNAKIAN DESCRIPTION FOR PARAHORIC BRUHAT-TITS GROUP SCHEMES by Kevin Michael Wilson Jr. Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2010 Advisory Committee: Professor Thomas Haines, Chair/Advisor Professor Jeffrey Adams Professor Jonathan Rosenberg Professor Niranjan Ramachandran Professor M. Coleman Miller c Copyright by Kevin Michael Wilson Jr. 2010 Acknowledgments I would like to take this opportunity to thank all of the people that have made this thesis possible. First, and foremost, I would like to thank my advisor, Professor Thomas Haines, for all of the time and energy he has put into developing me as a mathematician. He has truly been a fantastic advisor, and I could not have asked for a better thesis problem to work on. Moreover, I greatly appreciate all of the financial support he has provided me with, which has allowed me to focus on my research and to attend several conferences. I would also like to thank the Maryland Mathematics Department as a whole for all of the support, both financial and otherwise, that they have given me through- out my time here. I am especially grateful for the NSF VIGRE fellowship that was awarded to me for my first four years here. I owe a special thank you to Profes- sor Jeffrey Adams for all of the knowledge he has imparted to me over the years through the wonderful classes he taught and the various discussions we have had. I also owe a debt of gratitude to Professor Niranjan Ramachandran for pointing out an important reference which is used in the proof of Proposition 4.2.13. Graduate school would have been much less enjoyable without the help and friendship of the many people I have met here. In particular, I would like to thank Ted Clifford, Walter Ray-Dulany, Sean Rostami, Chris Zorn, Nick Long, Moshe Adrian, and Ben Lauser for all of the fun times and interesting discussions we have had over the years. Finally, I would like to thank my parents, Kevin and Betty Wilson, and my fianc´ee,Beth McLaughlin, for always being there, and for providing all of the love and support I could ever want or need. ii Table of Contents 1 Introduction and Summary of Results 1 1.1 Outline of Thesis . .4 2 Preliminaries 7 2.1 Notation . .7 2.1.1 Lattice Chains . .7 2.1.2 Buildings Notation . .8 2.1.3 Categorical Notation . 11 2.2 Representations of G ........................... 12 2.2.1 Existence of Faithful Representations . 12 2.2.2 Tensor Generator . 16 2.2.3 Weyl Modules . 20 2.3 Tannakian Duality . 25 3 A Tannakian Description for Bruhat-Tits Buildings 27 3.1 Moy-Prasad Filtrations Associated to Any x 2 Ae ........... 27 3.2 Moy-Prasad Filtrations of Any Finitely Generated Representation . 28 3.3 Dual Filtration Associated to a Moy-Prasad Filtration . 29 3.4 Parahoric Subgroups Stabilize Moy-Prasad Filtrations . 30 3.5 Moy-Prasad Filtrations Associated to Any Point in Be(G)....... 33 3.6 Recovering the Facet Containing y 2 Be(G) From fVy;rg ........ 35 3.7 Tannakian Description for Be(G)..................... 37 4 A Tannakian Description for Bruhat-Tits Group Schemes 42 4.1 Definition of the Functor . 44 4.2 Comparison of Aut with ....................... 46 Fe GFe 4.2.1 Generic Fiber . 47 4.2.2 OE Points . 48 4.2.3 Representable by an Affine Scheme . 55 4.2.4 Finite Type . 59 5 Special Cases 67 5.1 x =0.................................... 67 5.2 Char(k)=0................................ 67 5.3 G = GLn ................................. 70 6 Dependence of Aut on the Facet F 75 Fe e 6.1 Comparing Aut and Aut ........................ 75 Fe Ge 6.2 The Iwahori Case . 76 iii A Lattice Chain Description for BT Group Schemes Associated to GLn 80 A.1 Background and Examples . 80 A.2 Definitions . 88 A.3 Results . 91 B Background Results 101 Bibliography 103 iv Chapter 1 Introduction and Summary of Results The notion of a building was introduced by Jacques Tits in the 1950's to provide a geometric tool for the study of semi-simple Lie groups over general fields in a systematic way. See [T2], [Br], and [Rou]. These buildings are simplicial complexes made up of apartments which are spheres, and hence they are called spherical buildings. In the 1960's, Fran¸coisBruhat and Jacques Tits ([BT1]) defined another build- ing associated to a semi-simple Lie group, or more generally a reductive group, over a field equipped with a non-archimedean discrete valuation. These buildings are (poly)-simplicial complexes whose apartments are affine spaces, and they are called affine buildings or Bruhat-Tits buildings. They are the analogue in the non- archimedean setting of the symmetric space associated to a real reductive Lie group. Let G be a connected reductive group defined over a non-archimedean field K with ring of integers O, and let Be(G(K)) denote the Bruhat-Tits building associated to G. In their seminal works [BT1] and [BT2], Bruhat and Tits proved many things about the structure of Be(G(K)) and also defined some important objects which relate to Be(G(K)). At least for our purposes, the most important related object they defined was the parahoric Bruhat-Tits group scheme associated to a (poly)-simplex F, called GFe e 1 a facet, in Be(G). It is a smooth connected affine group scheme over O with generic fiber G such that, at least when G is simply connected, (O) is the stabilizer in GFe G(K) of the facet F. More generally, the group (O) is a subgroup of the fixer of e GFe Fe in G(K) called a parahoric subgroup. Parahoric subgroups are important objects in the theory of Shimura varieties (see [RZ], [H2]) and also in representation theory. In particular, in [MP1] and [MP2] Allen Moy and Gopal Prasad defined an R-filtration on parahoric subgroups and on the Lie algebra associated to G. This allowed them to define the depth of an admissible representation, which is an important invariant of such representations. Moreover, in the depth zero case they related the representation theory of G to the well understood representation theory of an associated finite group. Thus it is important to understand the parahoric Bruhat-Tits group schemes, which are somewhat mysterious objects in general. Bruhat and Tits themselves did significant work on understanding these objects in [BT2], [BT3], and [BT4]. In the latter two papers, they described the Bruhat-Tits building of a classical group G in terms of graded lattice chains on the standard representation V of G. Under this identification, the group schemes can be realized as stabilizers of these lattice GFe chains in V . Moreover, using these concrete descriptions, the Moy-Prasad filtrations on a parahoric subgroup can be described in terms of lattice chains. See [Yu]. More recently, in [GY1] and [GY2] Wee Teck Gan and Jiu-Kang Yu described the Bruhat-Tits buildings and group schemes associated to the exceptional groups G2, F4, and E6 in terms of a set of norms on a representation V , or equivalently a set of graded lattice chains in V . In each of these cases they choose one representation 2 of the particular group which remains fixed throughout their descriptions. The goal of this thesis is to give a uniform lattice chain description to all of the Bruhat-Tits buildings and group schemes associated to the split classical groups and the exceptional groups. In all of the above cases, a particular representation is chosen through which these objects are described. However, the choice made depends greatly on the case you are in. In order to get a more uniform description it seemed natural to use the entire category of representations associated to G, and for this we need the theory of Tannakian duality.
Recommended publications
  • Chapter 25 Finite Simple Groups
    Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972.
    [Show full text]
  • Prescribed Gauss Decompositions for Kac-Moody Groups Over Fields
    RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA JUN MORITA EUGENE PLOTKIN Prescribed Gauss decompositions for Kac- Moody groups over fields Rendiconti del Seminario Matematico della Università di Padova, tome 106 (2001), p. 153-163 <http://www.numdam.org/item?id=RSMUP_2001__106__153_0> © Rendiconti del Seminario Matematico della Università di Padova, 2001, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Prescribed Gauss Decompositions for Kac-Moody Groups Over Fields. JUN MORITA(*) - EUGENE PLOTKIN (**) ABSTRACT - We obtain the Gauss decomposition with prescribed torus elements for a Kac-Moody group over a field containing sufficiently many elements. 1. Introduction. Kac-Moody groups are equipped with canonical decompositions of different types. Let us note, for instance, the decompositions of Bruhat, Birkhoff and Gauss. As in the finite dimensional case, they play an im- portant role in calculations with these groups. However, in the Kac-Moo- dy case each of these decompositions has its own special features (see, for example, [18] where J. Tits compares the Bruhat and the Birkhoff decompositions and presents some applications). The aim of this paper is to establish the so-called prescribed Gauss decomposition for Kac-Moody groups.
    [Show full text]
  • A NEW APPROACH to UNRAMIFIED DESCENT in BRUHAT-TITS THEORY by Gopal Prasad
    A NEW APPROACH TO UNRAMIFIED DESCENT IN BRUHAT-TITS THEORY By Gopal Prasad Dedicated to my wife Indu Prasad with gratitude Abstract. We present a new approach to unramified descent (\descente ´etale") in Bruhat-Tits theory of reductive groups over a discretely valued field k with Henselian valuation ring which appears to be conceptually simpler, and more geometric, than the original approach of Bruhat and Tits. We are able to derive the main results of the theory over k from the theory over the maximal unramified extension K of k. Even in the most interesting case for number theory and representation theory, where k is a locally compact nonarchimedean field, the geometric approach described in this paper appears to be considerably simpler than the original approach. Introduction. Let k be a field given with a nontrivial R-valued nonarchimedean valuation !. We will assume throughout this paper that the valuation ring × o := fx 2 k j !(x) > 0g [ f0g of this valuation is Henselian. Let K be the maximal unramified extension of k (the term “unramified extension" includes the condition that the residue field extension is separable, so the residue field of K is the separable closure κs of the residue field κ of k). While discussing Bruhat-Tits theory in this introduction, and beginning with 1.6 everywhere in the paper, we will assume that ! is a discrete valuation. Bruhat- Tits theory of connected reductive k-groups G that are quasi-split over K (i.e., GK contains a Borel subgroup, or, equivalently, the centralizer of a maximal K-split torus of GK is a torus) has two parts.
    [Show full text]
  • CURTIS-TITS GROUPS GENERALIZING KAC-MOODY GROUPS of TYPE Aen−1
    CURTIS-TITS GROUPS GENERALIZING KAC-MOODY GROUPS OF TYPE Aen−1 RIEUWERT J. BLOK AND CORNELIU G. HOFFMAN Abstract. In [13] we define a Curtis-Tits group as a certain generalization of a Kac- Moody group. We distinguish between orientable and non-orientable Curtis-Tits groups and identify all orientable Curtis-Tits groups as Kac-Moody groups associated to twin- buildings. In the present paper we construct all orientable as well as non-orientable Curtis-Tits groups with diagram Aen−1 (n ≥ 4) over a field k of size at least 4. The resulting groups are quite interesting in their own right. The orientable ones are related to Drinfeld’s construction of vector bundles over a non-commutative projective line and to the classical groups over cyclic algebras. The non-orientable ones are related to expander graphs [14] and have symplectic, orthogonal and unitary groups as quotients. Keywords: Curtis-Tits groups, Kac-Moody groups, Moufang, twin-building, amalgam, opposite. MSC 2010: 20G35 51E24 1. Introduction The theory of the infinite dimensional Lie algebras called Kac-Moody algebras was ini- tially developed by Victor Kac and Robert Moody. The development of a theory of Kac- Moody groups as analogues of Chevalley groups was made possible by the work of Kac and Peterson. In [44] J. Tits gives an alternative definition of a group of Kac-Moody type as being a group with a twin-root datum, which implies that they are symmetry groups of Moufang twin-buildings. In [2] P. Abramenko and B. Mühlherr generalize a celebrated theorem of Curtis and Tits on groups with finite BN-pair [18, 42] to groups of Kac-Moody type.
    [Show full text]
  • FINITE GROUP ACTIONS on REDUCTIVE GROUPS and BUILDINGS and TAMELY-RAMIFIED DESCENT in BRUHAT-TITS THEORY by Gopal Prasad Dedicat
    FINITE GROUP ACTIONS ON REDUCTIVE GROUPS AND BUILDINGS AND TAMELY-RAMIFIED DESCENT IN BRUHAT-TITS THEORY By Gopal Prasad Dedicated to Guy Rousseau Abstract. Let K be a discretely valued field with Henselian valuation ring and separably closed (but not necessarily perfect) residue field of characteristic p, H a connected reductive K-group, and Θ a finite group of automorphisms of H. We assume that p does not divide the order of Θ and Bruhat-Tits theory is available for H over K with B(H=K) the Bruhat-Tits building of H(K). We will show that then Bruhat-Tits theory is also available for G := (HΘ)◦ and B(H=K)Θ is the Bruhat-Tits building of G(K). (In case the residue field of K is perfect, this result was proved in [PY1] by a different method.) As a consequence of this result, we obtain that if Bruhat-Tits theory is available for a connected reductive K-group G over a finite tamely-ramified extension L of K, then it is also available for G over K and B(G=K) = B(G=L)Gal(L=K). Using this, we prove that if G is quasi-split over L, then it is already quasi-split over K. Introduction. This paper is a sequel to our recent paper [P2]. We will assume fa- miliarity with that paper; we will freely use results, notions and notations introduced in it. Let O be a discretely valued Henselian local ring with valuation !. Let m be the maximal ideal of O and K the field of fractions of O.
    [Show full text]
  • Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
    Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval­ ey's starting point.
    [Show full text]
  • 2,3,T)-Generations for the Tits Simple Group 2F4(2
    2 0 (2; 3; t)-Generations for the Tits simple group F4(2) MOHAMMED ALI FAYA IBRAHIM FARYAD ALI King Khalid University King Khalid University Department of Mathematics Department of Mathematics P.O. Box 9004, Abha P.O. Box 9004, Abha SAUDI ARABIA SAUDI ARABIA mafi[email protected] [email protected] Abstract: A group G is said to be (2; 3; t)-generated if it can be generated by two elements x and y such that o(x) = 2, o(y) = 3 and o(xy) = t. In this paper, we determine (2; 3; t)-generations of the Tits simple group ∼ 2 0 T = F4(2) where t is divisor of jTj. Most of the computations were carried out with the aid of computer algebra system GAP [17]. 2 0 Key–Words: Tits group F4(2) , simple group, (2; 3; t)-generation, generator. 1 Introduction was first determined by Tchakerian [19]. Later but independently, Wilson [20] also determined the max- A group G is called (2; 3; t)-generated if it can be gen- imal subgroups of the simple group T, while studying erated by an involution x and an element y of order 3 the geometry of the simple groups of Tits and Rud- such that o(xy) = t. The (2; 3)-generation problem valis. has attracted a vide attention of group theorists. One For basic properties of the Tits group T and infor- reason is that (2; 3)-generated groups are homomor- mation on its subgroups the reader is referred to [20], phic images of the modular group P SL(2; Z), which [19].
    [Show full text]
  • GROUPS of OUTER TYPE E6 with TRIVIAL TITS ALGEBRAS This
    GROUPS OF OUTER TYPE E6 WITH TRIVIAL TITS ALGEBRAS SKIP GARIBALDI AND HOLGER P. PETERSSON Abstract. In two 1966 papers, J. Tits gave a construction of excep- tional Lie algebras (hence implicitly exceptional algebraic groups) and a classification of possible indexes of simple algebraic groups. For the special case of his construction that gives groups of type E6, we connect the two papers by answering the question: Given an Albert algebra A and a separable quadratic field extension K, what is the index of the resulting algebraic group? This article links two 1966 papers by Jacques Tits—namely, [Ti 66a] and [Ti 66b]—concerning simple linear algebraic groups over a field k. In the first paper, he gave a construction that takes a composition algebra K and a degree 3 Jordan algebra A and produces a simple algebraic group G(A, K). The Killing-Cartan type of the resulting group is given by the famous magic square: dim A 1 3 6 9 15 27 1 A1 A2 C3 F4 dim K 2 A2 A2 × A2 A5 E6 4 A1 A1 × A1 × A1 C3 A5 D6 E7 8 G2 D4 F4 E6 E7 E8 In the second paper, he listed the possible indexes of a simple linear algebraic group. Recall from [Ti 66b, 2.3] that the index is the Dynkin diagram embellished so as to describe a maximal k-split torus and the action of the absolute Galois group on the Dynkin diagram. The question (0.1) What is the index of the group G(A, K)? gives a natural link between the two papers.
    [Show full text]
  • On the Characters of Affine Kac–Moody Groups
    Proceedings of the Edinburgh Mathematical Society (1993) 36, 179-195 © ON THE CHARACTERS OF AFFINE KAC-MOODY GROUPS by STEPHEN SLEBARSKI (Received 18th October 1990, revised 17th March 1992) Let G be an affine Kac-Moody group over C, and V an integrable simple quotient of a Verma module for g. Let Cmm be the subgroup of G generated by the maximal algebraic torus T, and the real root subgroups. It is shown that <5eO'™ (the least positive imaginary root) gives a character (5eHom(G,C) such that the pointwise character xa of V may be defined on Gmi° r\ G>1. 1980 Mathematics subject classification: 17B67, 22E67. 0. Introduction A Kac-Moody group G over C, is associated to a pair (A, hz) where A is a generalized, indecomposable, Cartan nxn matrix of rank /, and hz is a free Z-module such that n — / = rank hz —n. Then G has a (B,N) pair forming a Tits system with Weyl group W=N/(BnN) (see also [12, 4, 9]). The Lie algebra g of G has a root space decomposition, and it is required that the im roots O£Hom(hz,Z) = :h|. We have O = <D" u O , where <&" is the W orbit of the simple roots and <t>im = O\Ore. If G is affine (that is A is symmetrizable, positive semidefinite) then there is an 1 analytic construction as a loop group [3]. Take a central extension S -*L.K(0)->LK{0) of l the loop group of a compact, connected almost simple Lie group Km by the circle S (this is obtained [8] from a closed, left invariant integral 2-form on LKm, if Ko is simply connected).
    [Show full text]
  • Moonshines for L2(11) and M12
    Moonshines for L2(11) and M12 Suresh Govindarajan Department of Physics Indian Institute of Technology Madras (Work done with my student Sutapa Samanta) Talk at the Workshop on Modular Forms and Black Holes @NISER, Bhubaneswar on January 13. 2017 Plan Introduction Some finite group theory Moonshine BKM Lie superalgebras Introduction Classification of Finite Simple Groups Every finite simple group is isomorphic to one of the following groups: (Source: Wikipedia) I A cyclic group with prime order; I An alternating group of degree at least 5; I A simple group of Lie type, including both I the classical Lie groups, namely the groups of projective special linear, unitary, symplectic, or orthogonal transformations over a finite field; I the exceptional and twisted groups of Lie type (including the Tits group which is not strictly a group of Lie type). I The 26 sporadic simple groups. The classification was completed in 2004 when Aschbacher and Smith filled the last gap (`the quasi-thin case') in the proof. Fun Reading: Symmetry and the Monster by Mark Ronan The sporadic simple groups I the Mathieu groups: M11, M12, M22, M23, M24; (found in 1861) I the Janko groups: J1, J2, J3, J4; (others 1965-1980) I the Conway groups; Co1, Co2, Co3; 0 I the Fischer groups; Fi22. Fi23, Fi24; I the Higman-Sims group; HS I the McLaughlin group: McL I the Held group: He; I the Rudvalis group Ru; I the Suzuki sporadic group: Suz; 0 I the O'Nan group: O N; I Harada-Norton group: HN; I the Lyons group: Ly; I the Thompson group: Th; I the baby Monster group: B and Sources: Wikipedia and Mark Ronan I the Fischer-Griess Monster group: M Monstrous Moonshine Conjectures I The j-function has the followed q-series: (q = exp(2πiτ)) j(τ)−744 = q−1+[196883+1] q+[21296876+196883+1] q2+··· I McKay observed that 196883 and 21296876 are the dimensions of the two smallest irreps of the Monster group.
    [Show full text]
  • LECTURE NOTES on ARTIN–TITS GROUPS Updated
    LECTURE NOTES ON ARTIN–TITS GROUPS PATRICK DEHORNOY updated: July 17, 2004 Contents 1 0.1. Braid groups 1 0.2. Artin–Tits groups 2 1. The general case 2 1.1. The word reversing technique 3 1.2. Artin–Tits monoids 4 1.3. Artin–Tits groups 5 1.4. Exercises 5 2. The spherical case 6 2.1. Background about Coxeter groups 6 2.2. Garside structure 7 2.3. Normal form 7 2.4. Exercises 8 3. The braid case 9 3.1. The Artin representation 10 3.2. Handle reduction 11 3.3. The braid ordering 16 3.4. Exercises 17 References 17 Artin–Tits groups are Coxeter groups with torsion removed (but, in the general case, no proof that they are torsion free is known...); they are also generalized braid groups, according to the equation Artin–Tits groups braid groups Artin–Tits groups Coxeter groups = , which also reads = . Coxeter groups symmetric groups braid groups symmetric groups Not much is known in the general case. The only well-understood case is the spherical case, i.e., when the associated Coxeter group is finite. Even more results are known in the case of braids, i.e., when the associated Coxeter group is a symmetric group. 0.1. Braid groups. In terms of transpositions, the symmetric group Sn admits the presentation 2 (0.1) hσ1, . , σn−1 ; σi = 1, σiσj = σjσi for |i − j| > 2, σiσjσi = σjσiσj for |i − j| = 1i. 2 When the torsion relations σi = 1 are removed, one obtains Artin’s braid group Bn: (0.2) hσ1, .
    [Show full text]
  • Bounds for the Orders of the Finite Subgroups of G(K)
    Group Representation Theory, eds. M. Geck, D. Testerman, J. Th´evenaz, EPFL Press, Lausanne 2006 Bounds for the orders of the finite subgroups of G(k) Jean-Pierre SERRE Introduction The present text reproduces - with a number of additions - a series of three two-hour lectures given at the Ecole Polytechnique F´ed´erale de Lausanne (E.P.F.L.) on May 25-26-27, 2005. The starting point is a classical result of Minkowski, dating from 1887, which gives a multiplicative upper bound for the orders of the finite sub- groups of GLn(Q). The method can easily be extended to other algebraic groups than GLn, and the field Q can be replaced by any number field. What is less obvious is that: a) one can work over an arbitrary ground field; b) in most cases one may construct examples showing that the bound thus obtained is optimal. This is what I explain in the lectures. Lecture I is historical: Minkowski (x1), Schur (x2), Blichfeldt and others (x3). The results it describes are mostly well-known, so that I did not feel compelled to give complete proofs. Lecture II gives upper bounds for the order of a finite `-subgroup of G(k), where G is a reductive group over a field k, and ` is a prime number. These bounds depend on G via its root system, and on k via the size of the Galois group of its `-cyclotomic tower (x4). One of these bounds (called here the S-bound, cf. x5) is a bit crude but is easy to prove and to apply.
    [Show full text]