Establishing Endocrine and Behavioral Parameters of Reproduction in Pacific Walrus (Odobenus Rosmarus Divergens)

Total Page:16

File Type:pdf, Size:1020Kb

Establishing Endocrine and Behavioral Parameters of Reproduction in Pacific Walrus (Odobenus Rosmarus Divergens) Establishing Endocrine and Behavioral Parameters of Reproduction in Pacific Walrus (Odobenus rosmarus divergens) Lisa Triggs A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2013 Committee: Glenn VanBlaricom Walt Dickhoff Karen Goodrowe Beck Kristin Laidre Program Authorized to Offer Degree: Aquatic and Fishery Sciences ©Copyright 2013 Lisa Triggs ii University of Washington Abstract Establishing Endocrine and Behavioral Parameters of Reproduction in Pacific Walrus (Odobenus rosmarus divergens) Lisa Triggs Chair of Supervisory Committee: Associate Professor Glenn R. VanBlaricom School of Aquatic and Fishery Sciences Reproduction of walrus (Odobenus rosmarus) in zoos and aquaria has met with limited success. While basic information on reproductive characteristics is available, there is limited knowledge of reproductive physiology and endocrinology for walrus. The overall goal of the research was to monitor reproductive events and seasonal changes that occur in ex situ walrus of North America by utilizing a variety of methods. To track changes in males, longitudinal hormonal analysis of saliva samples, changes in testicular size, presence or absence of spermatozoa and seasonal fluctuations in behavior were examined. Saliva samples were collected from six male walrus for periods of 12 to 36 months. Measurements of testicular length and width were collected on a weekly basis. Baseline testosterone values for each animal were established using an iterative process that eliminated elevated values. Elevations were defined as values ≥ 2 times the individual’s baseline (range 0.838-4.228 ng/ml). The mean combined baseline testicular measurement for individuals (R linear length + R linear width + L linear length + L linear width) was 54.81±2.13 cm while the mean combined increased testicular measurement (an increase of 15% or more over minimum values) was 65.38±1.71. Three of six animals displayed the typical iii rise and fall of testosterone concentrations observed in seasonal breeders in the wild and elevations were coincident with reproductive behaviors. Behaviors included visual and vocal courtship displays, pursuit of females, clasping and penetration. Sperm presence in a single walrus during two years coincided with increased testicular measurements and mean duration of spermatozoal presence was 131±3 days. Endocrine profiles varied extensively among animals, demonstrating within-animal decline in testosterone levels over time, a lack of testosterone elevations coincident with the wild walrus breeding season and a blind male with a unique derivation in his endocrine profile, hormone elevations directly opposite the wild walrus breeding season. To track female reproductive cycles, longitudinal hormonal analysis of saliva samples and seasonal fluctuations in behavior were examined. Saliva samples were collected from six female walrus at least three times a week for periods of 12 to 55 months. Salivary estradiol-17β was deemed an unreliable indicator of the follicular phase because hormone concentrations did not display a rise in estrogen concentrations prior to a rise in progesterone concentrations nor increased estrogen concentrations coincident with estrus behaviors. The most commonly reported signs of behavioral estrus were soliciting male attention, clasping and penetration. In general, behavioral observation also was not a consistently reliable method for detecting impending estrus. Salivary progesterone was found to be unsuitable for monitoring the functional capacity of the corpus luteum because profiles were difficult to interpret biologically or physiologically. Progesterone profiles did not appear to coincide with behavioral or seasonal changes. However, periods of elevated progesterone concentrations were demonstrated in two of six females and were most likely representative of consecutive pseudopregnancies (mean 204.27 iv days). An inconsistency elucidated in this study involved a blind female with a unique derivation in her endocrine profile, inconsistent with the wild walrus breeding season and varying in time frame each year. Issues with walrus reproduction elucidated by this study included: within-animal decline in testosterone levels over time, unsynchronized cycles between animals residing together and the inconsistent timing of reproductive events in blind animals. To increase breeding success of the ex situ walrus population the following changes are proposed: a) increase the number of walrus in the population or consolidate existing walrus into larger social groups; and b) separate the genders during the non-breeding season or move animals to different facilities. Facility collaboration and continued monitoring of reproductive functioning via endocrine, anatomical and behavioral parameters would allow evaluation of the efficacy of the proposed changes. v Acknowledgments Rarely does one have the chance to research in depth the species with which one has grown so enamored. I would like to thank Dr. Glenn VanBlaricom for allowing me that opportunity when he agreed to take me as a graduate student. Thank you for seeing the potential in me for graduate level work and accepting me into your lab. Thank you for your guidance, support and encouragement. I would like to thank Dr. Walt Dickhoff for donating his personal copies of Austin and Short’s first edition of Reproduction in Mammals to substitute for a missing UW reproduction class. Your knowledge, expertise and advice in endocrinology were much appreciated. I would like to thank Dr. Karen Goodrowe Beck for encouraging me to pursue a graduate level degree and always challenging me to be better. Your patience, time, invaluable guidance and dedication to my success both as a committee member and curator are greatly appreciated. I would like to thank Dr. Kristin Laidre for joining my committee at the last minute without hesitation. Your passion for marine mammals and research is truly an inspiration. Thank you to Dr. Holly Reed and Dr. Brian Joseph for encouraging me to pursue the sciences at a higher level. Thank you for being such great mentors, colleagues and friends. Your encouragement, support and belief in me mean more than you will ever know. A very special thank you to my husband for all of his patience, love and support (both financially and emotionally) over the last five years. You helped me maintain my sanity during these overwhelming times and stood by me when sanity was no longer possible. None of this would have been possible without you. I owe you big time! For my mother, thank you for always vi being there when I needed encouragement and helping me with all the extras. You both mean the world to me. A huge thank you to all of the walrus staff at Point Defiance Zoo & Aquarium. My zoo family was very supportive and committed to this project. A special thanks to my coworker Amanda Shaffer who participated in this project from the very beginning. Thanks for assisting my brain on days when it was filled to capacity (or catastrophe) with walrus research. I would like to thank all the staff at the many organizations, Six Flags Discovery Kingdom, New York Aquarium, Sea World San Diego and the Indianapolis Zoo, that assisted in this project. A special thanks to Lisa Oland, Alisa Keyes, Hans Walters, Nicole Pisciotta, Leah Coombs, Jessa Paschke, Holley Muraco, Mike Muraco, Mitzi Synnott and William Winhall for their extra attention and assistance in this project. Without your time and commitment, this collaborative research would not have been possible. Thank you to all the incredible walrus (ET, Basilla, Joan, Sivuqaq, Uquq, Siku, Kulusiq, Ayveq, Obie, Aurora, Nereus and Brutus) that graciously allowed us to probe their mouths in an effort to collect saliva and lay out to have their testicles measured. Your patience and participation are much appreciated. Thanks to the staff at the Brookfield Zoo. In 2006 Joan and Basilla arrived at PDZA as part of a collaborative breeding loan. This collaborative effort was what prompted this project. I am grateful to the staff at the Seattle Aquarium for the generous use of their laboratory facilities and their guidance in all things EIA. Thank you to Dr. Shawn Larson for her awesome research program. A special thank you to Angela Smith for her positive personality, expertise and vii guidance in the lab and her willingness to assist me in times of need (help the printer won’t work, help the machine is acting funny, etc.). You are a joy to work with! I would like to express my gratitude to Dr. Karen Wolf and Dr. Kadie Anderson for their editing assistance. To the veterinary staff at PDZA (including Jules), thank you for all your assistance in this project. To Kate Faust, thank you for assisting in the organization of thousands of saliva samples. To Jesse Blake, the “stats guru”, your statistical knowledge and willingness to help are greatly appreciated. A special thanks to members of the VanBlaricom Lab at the University of Washington. You have all provided me with helpful advice, support and laughter. You have made me feel part of a unique school family. Last but not least, thank-you to the Point Defiance Zoo & Aquarium Dr. Holly Reed Conservation Fund for their financial support. You made this project a reality. viii Table of Contents Abstract ...................................................................................................................................................... iii Acknowledgments.....................................................................................................................................
Recommended publications
  • 01 Front.Pdf
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. STUDIES TOWARDS THE DEVELOPMENT OF A MULTI­ PURPOSE HOME SELF-TEST KIT FOR THE DETECTION OF URINARY TETRAHYDROCORTISONE AND TESTOSTERONE METABOLITES A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University Claire Margaret Nielsen 2003 ii Abstract The development of homogeneous enzyme immunoassays (HEIA) for testosterone glucuronide (TG) and tetrahydrocortisone glucuronide (THEG) in urine are described. The proposed test system is based on the Ovarian Monitor homogeneous immunoassay system, established by J.B Brown and L.F. Blackwell et al. 1 as a simple, laboratory accurate, monitoring device for the measurement of estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) as markers of the fertile phase during a womans menstrual cycle. This information can be used readily by women to identify their cyclical periods of fertility and infertility. The major testosterone metabolite in the urine of males, testosterone p-glucuronide, was synthesised by firstly preparing the glycosyl donor a-bromosugar and conjugating this with testosterone under standard Koenigs-Knorr conditions. 1H nmr studies confirmed that the synthetic steroid glucuronide had the same stereochemistry as the naturally occurring urinary testosterone glucuronide. Testosterone glucuronide and tetrahydrocortisone glucuronide conjugates of hen egg white lysozyme were prepared using the active ester coupling method in good yield. Unreacted lysozyme was successfully removed from the reaction mixture by a combination of cation­ exchange chromatography in 7 M urea and hydrophobic-interaction chromatography.
    [Show full text]
  • Comprehensive Urinary Hormone Assessments
    ENDOCRINOLOGY Complete Hormones – Analytes Comprehensive Urinary Hormone Assessments Urinary Pregesterones Urinary Glucocorticoids Urinary Androgens Urinary Estrogens Pregnanediol Cortisol, Free Testosterone Estrone Pregnanetriol Total 17-Hydroxy-corticosteroids Dehydroepiandrosterone (DHEA) Estradiol allo-Tetrahydrocortisol, a-THF Total 17-Ketosteroids Estriol Tetrahydrodeoxycortisol Androsterone 2-Hydroxyestrone Tetrahydrocortisol, THF Etiocholanolone 2-Methoxyestrone Tetrahydrocortisone, THE 11-Keto-androsterone 4-Hydroxyestrone 17-Hydroxysteriods, Total 11-Keto-etiocholanolone 4-Methoxyestrone Pregnanetriol 11-Hydroxy-androsterone 16α-Hydroxyestrone 11-Hydroxy-etiocholanolone 2-Hydroxy-estrone:16α-Hydroxyestrone ratio 2-Methoxyestrone:2-Hydroxyestrone ratio CLINICIAN INFORMATION 4-Methoxyestrone:4-Hydroxyestrone ratio ADVANCING THE CLINICAL UTILITY OF URINARY HORMONE ASSESSMENT Specimen Requirements Complete Hormones™ is Genova’s most comprehensive • 120 ml aliquot, refrigerated until shipped, urinary hormone profile, and is designed to assist with the from either First Morning Urine or 24-Hour clinical management of hormone-related symptoms. This profile Collection Why Use Complete Hormones? assesses parent hormones and their metabolites as well as key metabolic pathways, and provides insight into the contribution Hormone testing is an effective tool for assessing Related Profiles: that sex hormones may have in patients presenting with and managing patients with hormone- related symptoms. This profile supports: • Male Hormonal Health™
    [Show full text]
  • The Metabolism of Anabolic Agents in the Racing Greyhound
    The Metabolism of Anabolic Agents In the Racing Greyhound A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy by Mr. Keith Robert Williams, B.Sc. July 1999 Department of Forensic Medicine & Science University of Glasgow Copyright © 1999 by Keith R. Williams. All rights reserved. No part o f this thesis may be reproduced in any forms or by any means without the written permission o f the author. I ProQuest Number: 13833925 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833925 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 111-X (coK To my parents for all their help, support and encouragement i Table of Contents i List of Figures V List of Tables VIII Summary IX Chapter 1: Drugs in Sport ...............................................................................................................................1 Introduction .................................................................................................................................................
    [Show full text]
  • Insulin Enhances ACTH-Stimulated Androgen and Glucocorticoid Metabolism in Hyperandrogenic Women
    European Journal of Endocrinology (2011) 164 197–203 ISSN 0804-4643 CLINICAL STUDY Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women Flavia Tosi, Carlo Negri, Elisabetta Brun, Roberto Castello, Giovanni Faccini1, Enzo Bonora, Michele Muggeo, Vincenzo Toscano2 and Paolo Moghetti Division of Endocrinology and Metabolism and 1Clinical Chemistry Laboratory, University and Azienda Integrata Ospedaliera Universitaria di Verona, P.le Stefani 1, 37126 Verona, Italy and 2Division of Endocrinology, Ospedale Sant’Andrea, University La Sapienza, Ospedale Sant’Andrea, Via Di Grotta Rossa 1035, 00189 Rome, Italy (Correspondence should be addressed to P Moghetti; Email: [email protected]) Abstract Objective: In hyperandrogenic women, hyperinsulinaemia amplifies 17a-hydroxycorticosteroid intermediate response to ACTH, without alterations in serum cortisol or androgen response to stimulation. The aim of the study is to assess whether acute hyperinsulinaemia determines absolute changes in either basal or ACTH-stimulated adrenal steroidogenesis in these subjects. Design and methods: Twelve young hyperandrogenic women were submitted in two separate days to an 8 h hyperinsulinaemic (80 mU/m2!min) euglycaemic clamp, and to an 8 h saline infusion. In the second half of both the protocols, a 4 h ACTH infusion (62.5 mg/h) was carried out. Serum cortisol, progesterone, 17a-hydroxyprogesterone (17-OHP), 17a-hydroxypregnenolone (17-OHPREG), DHEA and androstenedione were measured at basal level and during the protocols. Absolute adrenal hormone secretion was quantified by measuring C19 and C21 steroid metabolites in urine collected after the first 4 h of insulin or saline infusion, and subsequently after 4 h of concurrent ACTH infusion. Results: During insulin infusion, ACTH-stimulated 17-OHPREG and 17-OHP were significantly higher than during saline infusion.
    [Show full text]
  • Investigation About the Effects and the Detection of Finasteride, a Substance Which Can Be Misused As Masking Agent in Doping Control” W
    PROJECT SUMMARY “Investigation about the effects and the detection of finasteride, a substance which can be misused as masking agent in doping control” W. Schanzer, H. Geyer (German Sport University, Cologne, Germany) Finasteride is an inhibitor of 5-alpha reductase, the enzyme responsible for conversion of testosterone to dihydrotestosterone. It is administered orally in a dose of 5 mg daily for the treatment of benign prostatic hypertrophy. Since 1999 it is also admitted in several countries for the treatment of men with hair loss (androgenetic alopecia) and it seems to become a so called ,,life style drug”. The recommended dose for the treatment of hair loss is 1 mglday. Recent studies with finasteride have shown, that this substance can be misused as a potential masking agent. The application of finasteride may prevent the detection of misuse of anabolic-androgenic steroids like nandrolone, norandrostendione, norandrostenediols, dihydrotestosterone and testosterone. These preliminary results should be confirmed by more extensive studies with several volunteers. If the preliminary results can be confirmed, it should be discussed, if finasteride is added to the prohibited class of masking agents. The second aim of the study is to develop and validate a sensitive and specific method for the detection of finasteride misuse. Investigation about the effects and the detection of finasteride, a substance which can be misused as masking agent in doping control Results and conclusions Finasteride is an inhibitor of 5-alpha reductase and used for the treatment of benign prostatic hypertrophy and androgenetic alopecia. Investigations with finsteride with only one volunteer have shown, that the use of finasteride complicates the detection of the misuse of several anabolic steroids in doping control.
    [Show full text]
  • Mass Spec Testing for Steroid Hormone Profiles: Making an Impact on Patient Care
    Mass Spec Testing for Steroid Hormone Profiles: Making an Impact on Patient Care R.J. Singh, Ph.D. Mayo Clinic Objectives •Congenital Adrenal Hyperplasia (CAH) •Sex Steroids •Cushing’s CAH New Born Screening 1 CAH CholesterolBiosynthesis of Steroids Pregnenolone 17- OH Pregnenolone DHEA ase ’ -----------------------------------------------------------------------------3SDH 17,20 desmolase 17 OH Progesterone 17-OH Progesterone Androstenedione 21 OH'ase 17b SDH ---------------------------------------------- Aromatase 21-Deoxycorti- 11-deoxycortisol Testosterone costerone 11 OH'ase Aromatase ---------------------------------------------- Estrone Corticosterone Cortisol Estradiol 17b SDH 18 OH'ase ---------------------- Cortisone --- Aldosterone STEROID PROFILE BY LC MS/MS TIC: from 051200-36 9.5e5 8 9.0e5 1. Cortisone 8.5e5 2. Cortisol, Cortisol d-4 8.0e5 3. 21-Deoxycortisol 4. Corticosterone 7.5e5 5. 11-Deoxycortisol 7.0e5 6. Androstendione 6.5e5 7. DOC 8. 17-Hydroxyprogesterone 6.0e5 17-Hydroxypregnenolone 5.5e5 9. Progesterone 5.0e5 10. Pregnenolone Intensity, cps 4.5e5 4.0e5 3.5e5 3.0e5 6 2.5e5 5 7 10 2.0e5 1.5e5 34 2 1.0e5 1 5.0e4 9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 Time, min 6 2 Basics of MS Method Basics of MS Method Lack of Standardization 3 RIA vs. LC-MS/MS 14000 12000 10000 8000 6000 4000 Mayo LC/MS/MS ng/dL LC/MS/MS Mayo 2000 0 0 2000 4000 6000 8000 10000 12000 14000 Ext/RIA ng/dL Correlation Between Two Sites 4 Bland Altman Plot (N=76) 1000 + 2 SD = 801.4 500 + 1 SD = 405.8 Mean difference= 10.1 0 (ng/dL) - 1 SD = 385.6 -500
    [Show full text]
  • A-1-Antitrypsin Deficiency: Phenotype Vs. Genotype
    Impact of Tandem Mass Spectrometry in Clinical Diagnostics R.J. Singh, Ph.D. Mayo Clinic Definition Diagnosis or Di`ag`nos´tics • Identification of a disease, disorder, or syndrome through a method of consistent and accurate analysis. Laboratory Automation Picture of the UVA lab here Methodologies for Analysis RIA GC-FID CLIA LC-UV/EC ELISA GC-MS FIA LC-MS ICMA LC-MS/MS Biosynthesis of Steroids Cholesterol Pregnenolone 17- OH Pregnenolone DHEA ---------------------3βSDH -------------------------------------------------------- 17,20 desmolase 17 OH’ase Progesterone 17-OH Progesterone Androstenedione 21 OH'ase 17b SDH ---------------------------------------------- Aromatase ------ 11-Deoxycorticosterone 11-deoxycortisol Testosterone 11 OH'ase Aromatase ---------------------------------------------- ------ Estrone Corticosterone Cortisol Estradiol 17b SDH 18 OH'ase ---------------------- Cortisone --- Aldosterone Cushing’s Syndrome Introduction Hypothalamus CRH Pituitary Cortisol ACTH - + Adrenal Gland Cortisol ACTH-Dependent Cushing’s Syndrome Cushing’s Disease Ectopic ACTH Syndrome ACTH-Independent Cushing’s Syndrome Adrenal adenoma Adrenal carcinoma Adrenal Gland Adrenaline Adrenal Cortex (outer) Adrenal Medulla (center) http://www.pathology.vcu.edu/education/endocrine/endocrine/adrenal/micro/adrad1x.gif Obesity Trends* Among U.S. Adults BRFSS, 1990, 1998, 2006 (*BMI ≥30, or about 30 lbs. overweight for 5’4” person) 1990 1998 2006 No Data <10% 10%–14% 15%–19% 20%–24% 25%–29% ≥30% Biosynthesis of Steroids Cholesterol Pregnenolone 17- OH
    [Show full text]
  • Discover Essential Insights Oids Omatase TIC S ,20 Desmolase Ro with Specialized Hormone Testing
    TM with specialized hormone testing Discover Essential Insights the GDX-7-144 Cholesterol Steroidogenic Pathways © 2018 Genova Diagnostics Pregnenolone 17-OH-Pregnenolone DHEAAndrostenediol Essence_trifold_030718 Pregnanediol Pregnanetriol Progesterone 17-OH-Progesterone Androstenedione Testosterone Etiocholanolone 11-Deoxycortisol DHT Corticosterone THS 11β-OH-Androstenedione Androsterone Androstanediol Mineralocorticoids Cortisol Cortisone 11-OH-Androsterone Estrone (E1) Estradiol (E2) Aldosterone* a-THFTHF THE 11-OH-Etiocholanolone Adrenosterone 2-OH (E1+E2) 2-MeO (E1+E2) 17-Hydroxysteroids 800.522.4762 • www.gdx.net 16a-OH(E1) Estriol (E3) ENZYMATIC STEPS: 11-Keto-Androsterone 11-Keto-Etiocholanolone 3βHSD = 3beta-Hydroxysteroid dehydrogenase 4-OH (E1+E2) 5α = 5alpha-Reductase 17-Ketosteroids 4-MeO (E1+E2) 5β = 5beta-Reductase CYP11b1 = 11beta-Hydroxylase Hormones measurable 11βHSD = 11beta-Hydroxysteroid dehydrogenase Estrogen Metabolites 17βHSD = 17beta-Hydroxysteroid dehydrogenase by Genova Diagnostics: 17,20 Lyase = 17,20 Desmolase CYPc17 = 17alpha-Hydroxylase Measurable in Urine CYP19 = Aromatase CYP21 = 21-Hydroxylase ESTROGEN METABOLISM: Measurable in Blood 1A1 = Cytochrome p450 1A1 (CYP1A1) 3A4 = Cytochrome p450 3A4 (CYP3A4) 1B1 = Cytochrome p450 1B1 (CYP1B1) Measurable in Saliva COMT = Catechol-O-Methyl-transferase © 2016 Genova Diagnostics • e,po,steropath,031016 *Serum Testosterone Melatonin (x3) Progesterone (x3) Estrogens (x3) (E1, E2, E3) Testosterone Progesterone Melatonin (x3) Peri/Menopausal Females Estrogens (E1,
    [Show full text]
  • ANDROGEN ELITE (Dried Urine)
    ANDROGEN ELITE (dried urine) The aging male experiences a decrease in testosterone at a rate of 10% per decade from the age of 30. This reduction of testosterone and other androgens experienced as a consequence of the aging process has been named andropause or androgen deficiency of the aging male (ADAM). Symptoms associated with ADAM can be associated with impaired 5-alpha reductase or aromatase activity, enzymes responsible for conversion of Testosterone to Dihydrotestosterone (DHT) or estrogens. Symptoms of ADAM consist of somatic, sexual and psychological changes including reduced muscle mass, reduced BMD, increased cardiovascular disease, lowered libido, depression, increased Alzheimer’s disease and a general decrease in well-being. This test provides a focused overview of the male, some female hormones, and its metabolites: Estradiol, Estrone, Estriol, 2OHE1, 16αOHE1; Pregnanediol, Allopregnanolone, Testosterone, Epi- Testosterone, 5α-dihydrotestosterone, Androstenedione, DHEA, 5α,3α- Androstanediol, Cortisol, Cortisone, Tetrahydrocortisol, Tetrahydrocortisone. Hormones and Aging Hormones are powerful molecules that are essential for life. Imbalances of hormones affects other organ systems like the adrenals, thyroid and nervous system. What many people fail to recognise however, is that partial deficiencies also have a wide reaching negative effect on the human body. This is understandable however, when a hormone’s mechanism of action is understood. Aging is one process which is associated with hormone decline. In the past it was thought that this reduction was a normal consequence of the aging process. However, more recently an alternative theory has been proposed; that hormones do not decrease because we age, but rather we age because our hormones decrease i.e.
    [Show full text]
  • Pregnenolone
    PREGNENOLONE Pregnenolone, 3α-hydroxy-5-β-pregnen-20-one, is a precursor to steroid hormones such as progesterone, DHEA, mineralocorticoids, glucocorticoids, androgens, and estrogens. Pregnenolone is also known as the mother hormone is made directly from cholesterol within the mitochondria of the adrenal glands and, to a lesser degree, the nervous system. Pregnenolone is supplemented when both progesterone and DHEA are deficient. It is used in memory support, immune health and mood support. Hormone imbalances are associated with numerous symptoms and health conditions. Assessing and diagnosing these changes are important to decrease unnecessary suffering and prevent degenerative diseases. Female hormones fluctuate through a menstrual cycle and at various times of a woman’s life. Imbalances in hormones are associated with PMS, menopause and more complex conditions like PCOS and endometriosis. SYMPTOMS AND CONDITIONS ASSOCIATED WITH HORMONE IMBALANCES Low sex drive Insomnia & sleep disturbances Depression & irritability Cancer Fatigue Hair thinning and loss Weight gain and decreased muscle tone Osteoporosis Memory loss, foggy thinking & Alzheimer’s disease Cardiovascular disease Hormones and Aging Hormones are powerful molecules that are essential for life. Imbalances of hormones affects other organ systems like the adrenals, thyroid and nervous system. What many people fail to recognise however, is that partial deficiencies also have a wide reaching negative effect on the human body. This is understandable however, when a hormone’s mechanism of action is understood. Aging is one process which is associated with hormone decline. In the past it was thought that this reduction was a normal consequence of the aging process. However, more recently an alternative theory has been proposed; that hormones do not decrease because we age, but rather we age because our hormones decrease i.e.
    [Show full text]
  • ESTROGEN METABOLITES – Level 2 (Spot Urine)
    ESTROGEN METABOLITES – Level 2 (spot urine) The measure of estrogens and its metabolites is designed to assist in the prevention of estrogen and hormone related conditions. Estrogens, predominantly Estrone, Estradiol and Estrone are found in varying quantities with its own unique function. The estrogens are metabolised to its excretory by- products which have their own biological actions; some have the stimulatory properties of estradiol, whilst others are weak and protective estrogen molecules. This test provides a focused overview of estrogen metabolites: E1, E2, E3, 2OHE1, 16OHE1, 2:16 ratio, 4OHE1. An imbalance in estrogen metabolism has been associated with osteoporosis, high blood pressure, lupus and cancer (breast, endometrial, prostate, thyroid, head and neck). As the estrogen metabolites are modifiable by lifestyle and nutritional changes, this test is useful for not only establishing risk but monitoring therapies which can reduce the probability of these disorders. The Risks and Benefits of Estrogen Estrogens are secreted from the ovaries pre-menopausally. They are aromatised from adrenal androgens post-menopausally. Deficient estrogens can stimulate bone resorption, collagen breakdown, cardiovascular dysfunction and menopausal symptoms. Understanding the metabolism of estrogen is very important since this hormone is known to have benefits and risks associated with it. Estrogen has positive effects on the cardiovascular system, bone, brain, skin as well as reproductive organs. The issues experienced at menopause such as memory loss, osteoporosis and vaginal dryness validates the importance of maintaining optimal estrogen levels. The downside however of having too much estrogen is that it may increase the risk of hormone-related cancers such as endometrial, prostate and breast cancer.
    [Show full text]
  • Hormone Metabolites Reference Ranges | ZRT Laboratory
    Hormone Metabolites Reference Guide Hormone Metabolites Profiles Five profiles give a broad range of choices foran assessment of how patients are metabolizing a variety of hormones. They include: A wide array of estrogen, progesterone, and androgen metabolites useful for assessment of breast cancer risk Glucocorticoid metabolites, diurnal free cortisol, and diurnal free cortisone for adrenal assessment Diurnal 6-sulfatoxymelatonin (MT6s) to assess sleep / wake cycle dysfunction The xenoestrogen Bisphenol A (BPA) Sex steroid hormone metabolites results are useful for monitoring hormone therapy patients using patches, pellets or injectables. Adrenal Profile A picture of adrenal hormone metabolism. Consider for patients with adrenal dysfunction or stress. Useful as a second step of testing for those with adrenal fatigue symptoms, but whose saliva cortisol levels are normal (i.e., may indicate hyperexcretion of cortisol / excessive conversion to cortisone). Useful as a screening test for Addison’s or Cushing’s disease. Estrogen Essential Profile A baseline view of how a patient is metabolizing estrogens. Consider for anyone with a personal or family history of estrogen-dependent cancer (e.g., breast cancer). Estrogen Elite Profile Estrogen, progesterone, and select androgen metabolites with BPA. Consider for anyone with a personal or family history of estrogen-dependent cancer (e.g., breast cancer), patients with symptoms of estrogen/progesterone imbalance, men with prostate cancer risk, or patients who want to assess their exposure to BPA. Basic Profile A baseline view of sex steroid hormone metabolite levels plus total cortisol. Consider as a baseline assessment for hormone replacement therapy. Advanced Profile Our broadest view of sex steroid hormone metabolite levels and cortisol metabolism, with full diurnal melatonin and BPA.
    [Show full text]