The Effect of Sand Content on Sediment Transport, Deposition, and Bar Morphology

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Sand Content on Sediment Transport, Deposition, and Bar Morphology The Effect of Sand Content on Sediment Transport, Deposition, and Bar Morphology By John Kemper Advisor: Dr. Karen Prestegaard April 26th, 2012 GEOL394H 1 Abstract Studies of stream adjustment to urbanization have focused primarily on the geomorphic consequences of increases in discharge, such as channel widening (e.g. Hammer, 1972, Pizutto et al., 2000). Urbanization can also affect sediment supply, grain size, or sediment transport mechanics, which can alter channel stability and morphology. Sediment deposition can initiate feedbacks among geomorphic and hydraulic variables leading to significant alterations of stream morphology. This has been documented in lower Little Paint Branch Creek by Blanchet [2009], although the underlying mechanics for these changes were not fully investigated. In summer 2012, simple alternate bars in the channel at Cherry Hill Road were replaced by large diagonal bars with very sharp bar fronts. These elevations of these bars changed were reduced during floods associated with Hurricane Sandy. These changes occurred over short timescales (< 6 months) and coincide with an increase in upstream sand supply associated with major road construction (of the Inter-County Connector or ICC) in the watershed (Blanchet, 2009). This research is designed to test the hypothesis that changes in bar morphology were caused by varying amounts of sand in the bedload, which reduces the critical dimensionless shear stress of the gravel, thus increasing sediment transport and deposition rates. (Wilcock and Crowe, 2003). Test of this hypothesis were based on field data collection and modeling of the sediment transport conditions before and after the Hurricane Sandy flood. Data collection included field measurements of channel morphology, water surface gradient, and grain size analysis of surface and subsurface material. Field data show that dimensionless shear stress for Hurricane Sandy was well below the * τ crit for homogenous gravel, indicating that sand content is responsible for lowering the critical dimensionless shear stress, leading to the substantial sediment transport observed. Using time series of important flow parameters a model for sediment transport in lower Little Paint Branch Creek was created. Suspended sediment profiles indicate that 500 µm and larger sand is not suspended at significant heights above the bed. Rouse number calculations indicate that sand is accumulated during small events and winnowed during large events. The model shows that a substantial number a small events occurred in the months prior to Hurricane Sandy, leading to the lowering of the critical dimensionless shear stress. This suggests that sand content, and the small flow events that lead to the accumulation of sand, have a significant impact on bar morphology and channel morphology for systems experiencing a sudden influx of sand sized sediment. 2 Introduction Stream channel morphology results from the deposition and erosion of sediment in alluvial channels. Although streams indicate a wide range of morphology, the location of sediment deposition generates three main planform patterns: straight, braided, and meandering (Leopold and Wolman, 1957). Even straight channels indicate patterns of sediment deposition either as riffle-pool sequences, which are vertical accumulations of gravel spaced along the channel bed, or as alternate bars that are deposited along alternating banks. The spacing of riffle- pool sequences and alternate bars are about 5-7 times the width of the channel (Leopold and Wolman, 1957). The alternate bars accompany a wandering thalweg, or line of greatest depth, which alternates from bank to bank as well. There is a continuum in channel form between channels with alternate bars and those with meander bends. The wavelength of the meander is 10-14 times the width of the channel; a meander wavelength contains 2 alternate bar sequences (Leopold and Wolman, 1957). In braided streams, sediment is initially deposited near the channel center, which is usually the location of highest bedload transport. Diversion of flow around the central bar forms two or more anastomosing channels and a resulting channel morphology that is wider and shallower than straight and meandering streams for equivalent discharges. Braided channels occur on steeper slopes than meandering channels with similar discharge. This makes sense because braided channel streams are generally mostly gravel and, for the same bankfull discharge, it requires a greater shear stress to transport gravel than sand. (Leopold and Wolman, 1957). In addition, sand is more easily suspended and thus swept to the channel edges by secondary currents (Dietrich and Smith, 1979). Channel morphology develops due to the interactions between flow and sediment transport in stream channels. Pioneering researchers identified systematic downstream changes in average channel morphology (termed hydraulic geometry) in most river systems (Leopold and Maddock, 1953). Average downstream hydraulic geometry relationships indicate that bankfull width is proportional to the square root of the discharge (w Q0.5). In a given stretch of river, Q is mostly constant, but width exhibits systematic changes between riffles and pools (Andrews, 1980) or between reaches with and without channel bars (Ferguson et al., 1993). To explain downstream hydraulic geometry, Parker (1979) hypothesized that most channels were “threshold channels” that moved sediment when the critical dimensionless shear stress was exceeded and that this threshold was achieved at the bankfull stage. Therefore, for a given energy gradient, the channel adjusts width until the channel depth generates a bankfull shear stress (~gdS, with = fluid density, g = gravitational constant, d = depth, S = water surface gradient) that is near the threshold of motion for the bed material size. Parker [1979] explained threshold channels by comparing the distributions of bankfull shear stress ( = gdS) and channel depth within a river cross section. If average bankfull shear stress is near critical, the distribution of shear stress indicates higher bankfull shear stress values ~ 20% above critical in the center of the channel, whereas shear stresses on the channel banks are below critical. In other words, is variable across the channel, and is above crit (shear stress required for incipient motion) for gravel in the center of the channel. This allows channels to transport sediment while maintaining stable channel banks. Therefore, for a threshold gravel bed stream (with a given gradient), grain size determines the threshold (bankfull) depth which, in turn, influences velocity. The threshold channel maintains itself through varying discharge events through positive and negative feedbacks and the importance of the adjacent floodplain in 3 carrying discharge through the width of the floodplain, which limits the rate at which depth increases in the channel. The original theory for threshold channel morphology assumed a constant critical dimensionless shear stress for a channel. Dimensionless shear stress is the ratio between fluid shear stresses and grain resisting forces (Shields, 1938): ∗ 1 where is shear stress, s is the ratio of sediment density s to water density , g is gravity, and * D50 is median grain size (measured as intermediate axis of a particle). is therefore the ratio of * fluid shear stress to grain resisting forces and crit is the dimensionless shear stress required for incipient motion (critical dimensionless shear stress). The original work on critical dimensionless shear stress was conducted on homogeneous sediment in flumes (Shields, 1936). Since that time, investigators have determined that the size distribution of surface particles (Parker and Klingeman, 1982; Wilcock, 1986) and the influences of sand on gravel transport (Ferguson et al, 1992; Wilcock and Crowe 2003) both significantly lower the critical dimensionless shear stress for gravel transport. The increase in sand content lowers the friction angle of the gravel, causing a decrease in dimensionless shear stress required for incipient motion. The increase in sand content causes the gravel sized particles (2-256 mm) to roll across the smaller sand particles ( mm to 2 mm) or, in other words, ride on a carpet of sand, thus lowering critical dimensionless shear stress. Thus, in gravel bed streams, changes in the supply of sand or the sorting of bed material can result in changes in sediment transport mechanics and thus sediment transport rates. These changes in transport can result in changes in sediment deposition and channel morphology. * Due to the dependence of crit (for gravel) on sand content, it introduces another parameter into the mechanics of gravel bar formation that has been largely ignored by previous studies. By combining the observations of Leopold and Maddock [1953], Leopold and Wolman [1957], Parker [1978], and Wilcock and Crowe [2003], we find that sand content could be an important parameter for gravel bar formation that has not been previously investigated. Partitioning of Shear Stress It is also important, when studying the effects of shear stress on sediment transport and gravel bar formation, to separate the shear stress into two components: the mean boundary shear stress exerted on bed surface particles and mean boundary shear stress exerted on form roughness of bars which, when summed together, equal the total mean boundary shear stress (Lisle et al., 1993). Surface particle shear stress can be calculated by where is fluid density,
Recommended publications
  • Particle Size Distribution Controls the Threshold Between Net Sediment
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Particle Size Distribution Controls the Threshold Between 10.1002/2017GL076489 Net Sediment Erosion and Deposition in Suspended Key Points: Load Dominated Flows • New flow power sediment entrainment model scales with flow R. M. Dorrell1 , L. A. Amy2, J. Peakall3, and W. D. McCaffrey3 depth instead of particle size and incorporates capacity and 1Energy and Environment Institute, University of Hull, Hull, UK, 2School of Earth Sciences, University College Dublin, Dublin, competence limits 3 • Suspended load, at the threshold Ireland, School of Earth and Environment, University of Leeds, Leeds, UK between net erosion and deposition, is shown to be controlled by the particle size distribution Abstract The central problem of describing most environmental and industrial flows is predicting when • Flow power model offers an order of material is entrained into, or deposited from, suspension. The threshold between erosional and magnitude, or better, improvement in fl predicting the erosional-depositional depositional ow has previously been modeled in terms of the volumetric amount of material transported in threshold suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow’s ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a fi Supporting Information: new particle entrainment function, where erosion is de ned in terms of the power used to lift mass from the • Table S1 bed. While current suspended load transport models commonly use a single characteristic particle size, • Supporting Information SI the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow.
    [Show full text]
  • Delft Hydraulics
    Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT Report November 2004 Z3748.00 WL | delft hydraulics Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT L.C. van Rijn, D.J.R. Walstra and M. van Ormondt Report Z3748.10 WL | delft hydraulics CLIENT: DG Rijkswaterstaat Rijks-Instituut voor Kust en Zee | RIKZ TITLE: Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE, FINAL REPORT ABSTRACT: In 2003 much effort has been spent in the improvement of the DELFT3D-ONLINE model based on the engineering sand transport formulations of the TRANSPOR2000 model (TR2000). This work has been described in Delft Hydraulics Report Z3624 by Van Rijn and Walstra (2003). However, the engineering sand transport model TR2000 has recently been updated into the TR2004 model within the EU-SANDPIT project. The most important improvements involve the refinement of the predictors for the bed roughness and the suspended sediment size. Up to now these parameters had to be specified by the user of the models. As a consequence of the use of predictors for bed roughness and suspended sediment size, it was necessary to recalibrate the reference concentration of the suspended sediment concentration profile. The formulations (including the newly derived formulations of TR2004) implemented in this 3D-model are described in detail. The implementation of TR2004 in Delft3D-ONLINE is part of an update of Delft3D which involves among others: the extension of the model to be run in profile mode, the synchronisation of the roughness formulations and inclusion of two breaker delay concepts.
    [Show full text]
  • Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang
    Chapter Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang Abstract Sediment transport (ST) in unsteady flows is a complex phenomenon that the existing formulae are often invalid to predict. Almost all existing ST formulae assume that sediment transport can be fully determined by parameters in streamwise direc- tion without parameters in vertical direction. Different from this assumption, this paper highlights the importance of vertical motion and the vertical velocity is suggested to represent the vertical motion. A connection between unsteadiness and vertical velocity is established. New formulae in unsteady flows have been developed from inception of sediment motion, sediment discharge to suspension’s Rouse num- ber. It is found that upward vertical velocity plays an important role for sediment transport, its temporal and spatial alternations are responsible for the phase lag phenomenon and bedform formation. Reasonable agreement between the measured and the proposed conceptual model was achieved. Keywords: unsteady flow, shields number, rouse number, sediment transport, vertical velocity 1. Introdution Sediment transport is the movement of solid particles driven by fluid like water or wind in rivers, lakes, reservoirs, coastal waters. Generally, in the real world the flow is unsteady like flood waves, tidal waves and wind waves, because steady and uniform flows are very rare in reality. Even so, it is understandable that sediment transport is first observed under well controlled conditions in laboratory, and then the data are collected to calibrate the models. These formulae are further examined using field data by assuming the laboratory flow conditions (generally steady and uniform flows) can be extended to rivers and coastal waters (generally unsteady and non-uniform).
    [Show full text]
  • A Two-Phase Flow Model of Sediment Transport: Transition from Bedload To
    J. Fluid Mech. (2014), vol. 755, pp. 561–581. c Cambridge University Press 2014 561 doi:10.1017/jfm.2014.422 A two-phase flow model of sediment transport: transition from bedload to suspended load Filippo Chiodi1, Philippe Claudin1 and Bruno Andreotti1, † 1Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France (Received 7 December 2013; revised 2 May 2014; accepted 21 July 2014) The transport of dense particles by a turbulent flow depends on two dimensionless numbers. Depending on the ratio of the shear velocity of the flow to the settling velocity of the particles (or the Rouse number), sediment transport takes place in a thin layer localized at the surface of the sediment bed (bedload) or over the whole water depth (suspended load). Moreover, depending on the sedimentation Reynolds number, the bedload layer is embedded in the viscous sublayer or is larger. We propose here a two-phase flow model able to describe both viscous and turbulent shear flows. Particle migration is described as resulting from normal stresses, but is limited by turbulent mixing and shear-induced diffusion of particles. Using this framework, we theoretically investigate the transition between bedload and suspended load. Key words: alluvial dynamics, multiphase and particle-laden flows, particle/fluid flow 1. Introduction When a sedimentary bed is sheared by a water flow of sufficient strength, the particles are entrained into motion. In a homogeneous and steady situation, the fluid flow can be characterized by a unique quantity: the shear velocity u .
    [Show full text]
  • Suspended Sediment Concentration Profiles in the Bottom Boundary Layer
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1993 Suspended sediment concentration profiles in the bottom boundary layer Jingping Xu College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Geology Commons, and the Oceanography Commons Recommended Citation Xu, Jingping, "Suspended sediment concentration profiles in the bottom boundary layer" (1993). Dissertations, Theses, and Masters Projects. Paper 1539616914. https://dx.doi.org/doi:10.25773/v5-55tq-zj21 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Design of a Sediment Mitigation System for Conowingo Dam Presenters: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume
    Design of a Sediment Mitigation System for Conowingo Dam Presenters: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume Sponsor: Faculty Advisor: Lower George Donohue Susquehanna Riverkeeper Agenda • Context • Stakeholders • Problem/Need Statement • Mission Requirements • Design Alternatives • Technical Approach • Preliminary Results • Project Management 2 Chesapeake Bay and The Susquehanna River • Chesapeake Bay is the largest estuary in the United States • 3 largest tributaries of the Bay are the Susquehanna, Potomac and James rivers – Provide more than 80% of the Bay’s freshwater • Susquehanna River is the Bay’s largest tributary – Provides nearly 50% of freshwater to the Bay – Flows from NY to PA to MD Map of the Chesapeake Bay Watershed Source: The PA Dept. of Environmental Protection 3 Lower Susquehanna River and Water Quality • Flows through Pennsylvania and Maryland • Quality of water is vital to the bay’s health – Improvement in water quality thus far can be attributed to US Army Corp. of Engineers • Provides power for turbines in hydroelectric plants and clean water to people • Contains 4 Dams: York Haven, Safe Harbor, Holtwood, Conowingo – York Haven, Safe Harbor and Holtwood have reached steady state - dam has completely silted up and is no longer able to retain sediment; dams are at maximum capacity Map of Conowingo Reservoir Source: US Army Corps of Engineers, (2013) 4 Conowingo Dam • Constructed in 1928 • Southernmost Dam of the Lower Susquehanna sediment • Location of Conowingo Hydroelectric Station – Mainly provides power to Philadelphia, PA – A black start power source – Provides 1.6 billion kWh annually • Traps sediment and nutrients from reaching the Chesapeake Bay – Water quality is closely related to sediment Conowingo Dam deposition Source: J.
    [Show full text]
  • Chapter 10 Movement of Sediment by Water Flows
    CHAPTER 10 MOVEMENT OF SEDIMENT BY WATER FLOWS INTRODUCTION 1 A simple flume experiment on sediment movement by a unidirectional current of water in a flume serves to introduce the material in this chapter. Place a layer of sediment in the flume, level it to have a planar surface, and establish a uniform flow at a certain depth and velocity. Gradually, in steps, increase the strength of the flow beyond the condition for incipient movement. The magnitude of the flow strength relative to what is required for incipient movement of the bed sediment is conventionally called the flow intensity, and is usually taken to be the ratio τo/τoc (or, what is the same, u*/u*c), where the subscript c denotes the threshold (“critical”) condition. 2 At first the particles move as bed load, by hopping, rolling, and/or sliding. Particle movement is neither continuous nor uniform over the bed: brief gusts or pulses of movement affect groups of particles locally, and seemingly randomly, on the bed. Particles move a short distance, stop, and then move again. Even when they are moving, they are generally not moving as fast as the fluid near the bed surface. 3 As the flow becomes stronger, some of the particles moving near the bed are lifted upward by upward-moving turbulent eddies and travel for more or less long distances downstream as suspended load. The stronger the flow and/or the finer the sediment, the greater is the concentration of suspended sediment, the higher it can travel in the flow, and the longer it moves downstream before returning to the bed.
    [Show full text]
  • Chapter 29 Sediment Transport
    Chapter 29 Sediment transport 29.1 Introduction The following seven test cases have been developed to illustrate the various options implemented in the sediment transport module bedload Compares the different formulations for bed load transport by im- posed currents (bottom stress) values (see Section 7.4). totload Compares the different formulations for total load transport by im- posed current (bottom stress) values (see Section 7.5). wavload Compares formulations for bed and total load transport with wave effects using imposed values for currents and wave parameters (wave height, period and direction). sedvprof Simulates the diffusion and settling of sediments in a water column by a bottom stress imposed via an external pressure gradient (surface slope). sedhprof This test case, taken from Hjelmfelt & Lenau (1970), simulates the transition between a non-eroding and an eroding bed. This is modeled by applying a boundary condition with a concentration of zero at the upstream boundary. Note that the velocity field is supplied as an initial condition, rather than calculated by COHERENS. Both 2-D and 3-D simulations are performed and different model settings are applied to simulate the convergence to an equilibrium state. seddens Simulates the evolution of an initial sediment distribution in a closed channel, consisting of vertically uniform concentrations in a sec- tion at the left of the channel and zero concentrations to the right. 793 794 CHAPTER 29. SEDIMENT TRANSPORT The sediment is allowed to settle due to is own weight. A current is generated by the horizontal concentration gradient. thacker This test case, after Thacker (1981), simulates the oscillations in a rotating parabolic basin with moving boundaries (shores lines).
    [Show full text]
  • Numerical Simulation of the Inception of Channel Meandering
    Earth Surface Processes and Landforms EarthSimulation Surf. Process. of the inceptionLandforms of30 channel, 1093–1110 meandering (2005) 1093 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/esp.1264 Numerical simulation of the inception of channel meandering Jennifer G. Duan1* and Pierre Y. Julien2 1 Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, Nevada 89119, USA 2 Engineering Research Centre, Colorado State University, Fort Collins, CO 80523, USA *Correspondence to: J. G. Duan, Abstract Division of Hydrologic Sciences, Desert Research Institute, The inception of channel meandering is the result of the complex interaction between flow, University and College System of bed sediment, and bank material. A depth-averaged two-dimensional hydrodynamic model Nevada, 755 E. Flamingo Road, is developed to simulate the inception and development of channel meandering processes. Las Vegas, NV 89119, USA. The sediment transport model calculates both bedload and suspended load assuming equi- E-mail: [email protected] librium sediment transport. Bank erosion consists of two interactive processes: basal erosion and bank failure. Basal erosion is calculated from a newly derived equation for the entrain- ment of sediment particles by hydrodynamic forces. The mass conservation equation, where basal erosion and bank failure are considered source terms, was solved to obtain the rate of bank erosion. The parallel bank failure model was tested with the laboratory experiments of Friedkin on the initiation and evolution processes of non-cohesive meandering channels. The model replicates the downstream translation and lateral extension of meandering loops reasonably well. Plots of meandering planforms illustrate the evolution of sand bars and redistribution of flow momentum in meandering channels.
    [Show full text]
  • Universit`A Degli Studi Di Trieste Large Eddy Simulation of Suspended
    Universita` degli Studi di Trieste XXVII Ciclo del Dottorato di Ricerca in Environmental and Industrial Fluid Mechanics Large Eddy Simulation of Suspended Sediment in Turbulent Open-Channel Flow Settore scientifico-disciplinare: ICAR/01 Ph.D. Student: Maryam Dallali Supervisor and Director: Prof. Vincenzo Armenio Co-Supervisor: Prof. Ana Maria Ferreira da Silva Co-Supervisor: Prof. Andrew Pollard Academic Year 2014-2015 ii Abstract This study aims to shed light on the dark sides of sediment transport and meandering channel flow patterns. For this purpose, the Large Eddy Simula- tion methodology is used to investigate sediment transport in open-channel flow and also to predict the meandering channel flow pattern in two sine- generated channels. In the turbulent flows the transported suspended sediments is usually assumed in a passive form. In other word, the feedback effect of sediment suspension on near-wall momentum transport is neglectable. The first phase of this research is devoted to quantify the just mentioned effect in the open channel flow. A single phase approach is used to gain better description of sediment-turbulence interaction. The effect of suspended particles on flow properties is presented through a buoyancy term in momentum equations. The initial analysis of concentration profiles shows that the combina- tion of large near-wall concentration and small deposition term, enhances the suspension concentration in case of small particles. Considering the buoyancy effect (two-way coupling model), the suspension concentration is reduced compared to the passive case. In addition, the buoyancy effects on the velocity field are also discussed. The comparison of streamwise mean velocity profiles reveals that the interaction of suspended particles with the underlying flow suppresses the vertical turbulent fluctuations and conse- quently reduces the von K`arm`anconstant (κ).
    [Show full text]
  • Design of a Dam Sediment Management System to Aid Water
    Design of a Dam Sediment Management System to Aid Water Quality Restoration of the Chesapeake Bay Presented By: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume from Transient Scouring Sponsors: Lower West & Rhode Susquehanna Riverkeeper Riverkeeper Dam Conowingo Faculty Advisor: George Donohue Agenda • Context • Stakeholders • Problem/Need Statement • Design Alternatives • Analysis and Design of Simulation • Design of Experiment • Results, Analysis & Recommendations 2 Chesapeake Bay and The Susquehanna River • Chesapeake Bay is the largest estuary in the United States • 3 largest tributaries of the Bay are the Susquehanna, Potomac and James rivers – Provide more than 80% of the Bay’s freshwater • Susquehanna River is the Bay’s largest tributary – Provides nearly 50% of freshwater to the Bay – Flows from NY to PA to MD Map of the Chesapeake Bay Watershed Source: The PA Dept. of Environmental Protection 3 Lower Susquehanna River and Conowingo Dam • Conowingo Dam (est. 1928) – southernmost Dam of the Lower Susquehanna • Quality of water from the Lower Susquehanna is vital to the bay’s health • Traps sediment and nutrients from reaching the Chesapeake Bay – Water quality is closely related to sediment deposition • The river provides power for turbines in hydroelectric plants and clean water to people • Conowingo Hydroelectric Station – Mainly provides power to Philadelphia, PA – A black start power source – Provides 1.6 billion kWh annually Map of Conowingo Reservoir Source: US Army Corps of Engineers, (2013) 4 Lower Susquehanna
    [Show full text]
  • Hydrology and Hydraulics
    Appendix D: Hydrology and Hydraulics Lower Pool 2 Channel Management Study: Boulanger Bend to Lock and Dam No. 2 Table of Contents Table of Figures ............................................................................................................................................. 3 Table of Tables .............................................................................................................................................. 4 Introduction .................................................................................................................................................. 5 Problem Discussion ................................................................................................................................... 5 BREAKOUT FLOWS ........................................................................................................................................ 5 SEDIMENT ................................................................................................................................................... 7 PRELIMINARY STUDIES .................................................................................................................................... 12 WEST ENGINEERING STUDY ........................................................................................................................ 12 ERDC - SHEAR STRESS AND ROUSE ANALYSIS ............................................................................................... 12 SUBSEQUENT ADH MODELING .......................................................................................................................
    [Show full text]