Exact Distribution of Divergence Times from Fossil Ages and Tree Topologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Correlates of Ghost Lineages in Ruminants
Paleobiology, 38(1), 2012, pp. 101–111 Ecological correlates of ghost lineages in ruminants Juan L. Cantalapiedra, Manuel Herna´ndez Ferna´ndez, Gema M. Alcalde, Beatriz Azanza, Daniel DeMiguel, and Jorge Morales Abstract.—Integration between phylogenetic systematics and paleontological data has proved to be an effective method for identifying periods that lack fossil evidence in the evolutionary history of clades. In this study we aim to analyze whether there is any correlation between various ecomorphological variables and the duration of these underrepresented portions of lineages, which we call ghost lineages for simplicity, in ruminants. Analyses within phylogenetic (Generalized Estimating Equations) and non-phylogenetic (ANOVAs and Pearson correlations) frameworks were performed on the whole phylogeny of this suborder of Cetartiodactyla (Mammalia). This is the first time ghost lineages are focused in this way. To test the robustness of our data, we compared the magnitude of ghost lineages among different continents and among phylogenies pruned at different ages (4, 8, 12, 16, and 20 Ma). Differences in mean ghost lineage were not significantly related to either geographic or temporal factors. Our results indicate that the proportion of the known fossil record in ruminants appears to be influenced by the preservation potential of the bone remains in different environments. Furthermore, large geographical ranges of species increase the likelihood of preservation. Juan L. Cantalapiedra, Gema Alcalde, and Jorge Morales. Departamento de Paleobiologı´a, Museo Nacional de Ciencias Naturales, UCM-CSIC, Pinar 25, 28006 Madrid, Spain. E-mail: [email protected] Manuel Herna´ndez Ferna´ndez. Departamento de Paleontologı´a, Facultad de Ciencias Geolo´gicas, Universidad Complutense de Madrid y Departamento de Cambio Medioambiental, Instituto de Geociencias, Consejo Superior de Investigaciones Cientı´ficas, Jose´ Antonio Novais 2, 28040 Madrid, Spain Daniel DeMiguel. -
Population Genomic Analysis Reveals That Homoploid Hybrid Speciation Can Speciation Hybrid Homoploid Reveals That Analysis Genomic Population E Origin
PROF. YONGSHUAI SUN (Orcid ID : 0000-0002-6926-8406) PROF. JIANQUAN LIU (Orcid ID : 0000-0002-4237-7418) Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process Dafu Ru1 *, Yongshuai Sun1,2*, Donglei Wang1*, Yang Chen1, Tianjing Wang1, Quanjun Hu1, Richard J. Abbott3, Jianquan Liu1# 1Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, P. R. China 2CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, P. R. China 3School of Biology, Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK Article *equal contributions to this work; #corresponding author ([email protected]) Abstract An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail we analyzed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. -
Miocene Mammal Reveals a Mesozoic Ghost Lineage on Insular New Zealand, Southwest Pacific
Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific Trevor H. Worthy*†, Alan J. D. Tennyson‡, Michael Archer§, Anne M. Musser¶, Suzanne J. Hand§, Craig Jonesʈ, Barry J. Douglas**, James A. McNamara††, and Robin M. D. Beck§ *School of Earth and Environmental Sciences, Darling Building DP 418, Adelaide University, North Terrace, Adelaide 5005, South Australia, Australia; ‡Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington 6015, New Zealand; §School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia; ¶Australian Museum, 6-8 College Street, Sydney, New South Wales 2010, Australia; ʈInstitute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt 5040, New Zealand; **Douglas Geological Consultants, 14 Jubilee Street, Dunedin 9011, New Zealand; and ††South Australian Museum, Adelaide, South Australia 5000, Australia Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved October 11, 2006 (sent for review July 8, 2006) New Zealand (NZ) has long been upheld as the archetypical Ma) dinosaur material (13) and isolated moa bones from marine example of a land where the biota evolved without nonvolant sediments up to 2.5 Ma (1, 14), the terrestrial record older than terrestrial mammals. Their absence before human arrival is mys- 1 Ma is extremely limited. Until now, there has been no direct terious, because NZ was still attached to East Antarctica in the Early evidence for the pre-Pleistocene presence in NZ of any of its Cretaceous when a variety of terrestrial mammals occupied the endemic vertebrate lineages, particularly any group of terrestrial adjacent Australian portion of Gondwana. -
The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène. -
Whole Genome Shotgun Phylogenomics Resolves the Pattern
Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, Fabien Condamine To cite this version: Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, et al.. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Systematic Biology, Oxford University Press (OUP), 2020, 69 (1), pp.38-60. 10.1093/sysbio/syz030. hal-02125214 HAL Id: hal-02125214 https://hal.archives-ouvertes.fr/hal-02125214 Submitted on 10 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Running head Shotgun phylogenomics and molecular dating Title proposal Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syz030/5486398 by guest on 07 May 2019 Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Authors Rémi Allio1*, Céline Scornavacca1,2, Benoit Nabholz1, Anne-Laure Clamens3,4, Felix -
IB 200A Principals of Phylogenetic Systematics Spring 2008
IB 200A Principals of Phylogenetic Systematics Spring 2008 Integrating Fossils into Phylogenies Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained. Two common answers are: (1) the two fields have fundamentally different aims, and (2) the tensions arise out of disciplinary squabbles for funding and prestige. Principal differences between neontology and paleobiology Neontological evolutionary Evolutionary paleobiology biology Focus of study Living organisms Fossil remains of organisms Temporal Shorter term: Typically longer term: perspective 10−2 – 103 years 103 – 107 years Theory Models of natural selection and Relies on broader neo-darwinian Speciation, generally articulated theory; rarely uses population in terms of population or genetic theory. Some distinctively quantitative genetics paleobiological theory (e.g., taphonomy) Methods Greater emphasis on Less emphasis on experiments experiments Data Emphasizes genetic data Extremely limited access to and population structure genetic data and population structure John Maynard Smith (1920-2004) – British evolutionary biologist and geneticist; evolution of sex, game theory in evolution, and signaling theory. Smith, J. M. (1984). ""Paleontology at the high table.". Nature 309 (5967): 401-402. Hennig – Character phylogeny (polarity). “Criterion of geological character precedence. If in a a monophyletic group a particular character condition occurs only in older fossils, and another only in younger fossils, then obviously the former is pleisomorphous and the latter the apomorphous condition.” Hennig goes on to discuss paleontological methods of phylogenetic systematics. During much of the 19th and 20th centuries, palaeontology was often considered as fundamental for understanding relationships amongst extant taxa. Then, in the late 1970s and early 1980s, with the advent of cladistics, the supremacy of fossils in phylogentic reconstruction was forcefully and successfully challenged. -
Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents. -
A New Reptile from the Lower Permian of Brazil (Karutia Fortunata Gen
Journal of Systematic Palaeontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter To cite this article: Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter (2021): A new reptile from the lower Permian of Brazil (Karutiafortunata gen. et sp. nov.) and the interrelationships of Parareptilia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2020.1863487 To link to this article: https://doi.org/10.1080/14772019.2020.1863487 View supplementary material Published online: 12 Jan 2021. Submit your article to this journal Article views: 107 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2021 http://dx.doi.org/10.1080/14772019.2020.1863487 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia aà b c b,d Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk ,Jorg€ Frobisch€ , Claudia Marsicanoe,f , Roger M. H. Smithg,h and Martha Richteri aMuseu de Arqueologia e Paleontologia, Universidade Federal do Piauı, 64049-550 Teresina, Brazil; bPaleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA; cNegaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; dInstitut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Invalidenstr. -
New Species of Olenellina Trilobites from the Early
THE NATURE OF EVOLUTIONARY RADIATIONS WITH A SPECIAL FOCUS ON DEVONIAN CALMONIID TRILOBITES by Francine R. Abe B.Sc., Bates College, 2003 Submitted to the Department of Ecology and Evolutionary Biology and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Bruce S. Lieberman, Co-Chair Edward O. Wiley, Co-Chair Paul Selden Maria Orive Linda Trueb th Date Defended: June 10 , 2010 The Dissertation Committee for Francine R. Abe certifies that this is the approved version of the following dissertation: THE NATURE OF EVOLUTIONARY RADIATIONS WITH A SPECIAL FOCUS ON DEVONIAN CALMONIID TRILOBITES Committee: Bruce S. Lieberman, Co-Chair Edward O. Wiley, Co-Chair Paul Selden Maria Orive Linda Trueb Date Defended: June 10th, 2010 ii ABSTRACT Trilobites were a diverse group of arthropods that left an extensive fossil record which are today used today to study macroevolutionary patterns and processes. A new species and form of olenelloidea trilobites (Nevadella keelensis n. sp. and Esmeraldina rowei) are described from the lower Cambrian Sekwi Formation, Canada. One particular clade of trilobites, the Devonian calmoniid trilobites of the Malvinokaffric Realm, was hailed as a classic paleontological example of an adaptive radiation. Three aspects of the radiation were examined in detail: diversification rates, biogeography, and morphological change. The rates of speciation calculated from stratigraphy were highest when sea level was lowest suggesting causal effect of abiotic factors in speciation. A phylogenetic biogeographic analysis indicated a geographically complex area, and this geographic complexity created various opportunities for speciation via allopatry through sea level changes. -
Ghost Lineages Deceive Introgression Tests and Call for a New Null Hypothesis
Ghost lineages deceive introgression tests and call for a new null hypothesis Théo Tricou1,*, Eric Tannier1,2 and Damien M. de Vienne1,* 1 Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622 Villeurbanne, France 2 INRIA Grenoble Rhône-Alpes, F-38334, France *Corresponding authors: E-mails: [email protected], [email protected] Supplementary Material Supplementary material and methods 1. Dfoil 1.1. Computing of the Dfoil For each combination of 5 lineages with symetrical topology (((P1,P2),(P3,P4)),O), we computed the 4 D-like statistics with the following equations (Pease and Hahn 2015): (Σ퐵퐴퐵퐴퐴 + Σ퐵퐵퐵퐴퐴 + Σ퐴퐵퐴퐵퐴 + Σ퐴퐴퐴퐵퐴) − (Σ퐵퐴퐴퐵퐴 + Σ퐵퐵퐵퐴퐴 + Σ퐴퐵퐵퐴퐴 + Σ퐴퐴퐵퐴퐴) DFO= (Σ퐵퐴퐵퐴퐴 + Σ퐵퐵퐵퐴퐴 + Σ퐴퐵퐴퐵퐴 + Σ퐴퐴퐴퐵퐴) + (Σ퐵퐴퐴퐵퐴 + Σ퐵퐵퐵퐴퐴 + Σ퐴퐵퐵퐴퐴 + Σ퐴퐴퐵퐴퐴) (Σ퐴퐵퐵퐴퐴 + Σ퐵퐵퐴퐴퐴 + Σ퐵퐴퐴퐵퐴 + Σ퐴퐴퐴퐵퐴) − (Σ퐴퐵퐴퐵퐴 + Σ퐵퐵퐴퐵퐴 + Σ퐵퐴퐵퐴퐴 + Σ퐴퐴퐵퐴퐴) DIL= (Σ퐴퐵퐵퐴퐴 + Σ퐵퐵퐴퐴퐴 + Σ퐵퐴퐴퐵퐴 + Σ퐴퐴퐴퐵퐴) + (Σ퐴퐵퐴퐵퐴 + Σ퐵퐵퐴퐵퐴 + Σ퐵퐴퐵퐴퐴 + Σ퐴퐴퐵퐴퐴) (Σ퐵퐴퐵퐴퐴 + Σ퐵퐴퐵퐵퐴 + Σ퐴퐵퐴퐵퐴 + Σ퐴퐵퐴퐴퐴) − (Σ퐴퐵퐵퐴퐴 + Σ퐴퐵퐵퐵퐴 + Σ퐵퐴퐴퐵퐴 + Σ퐵퐴퐴퐴퐴) DFI= (Σ퐵퐴퐵퐴퐴 + Σ퐵퐴퐵퐵퐴 + Σ퐴퐵퐴퐵퐴 + Σ퐴퐵퐴퐴퐴) + (Σ퐴퐵퐵퐴퐴 + Σ퐴퐵퐵퐵퐴 + Σ퐵퐴퐴퐵퐴 + Σ퐵퐴퐴퐴퐴) DOL (Σ퐵퐴퐴퐵퐴 + Σ퐵퐴퐵퐵퐴 + Σ퐴퐵퐵퐴퐴 + Σ퐴퐵퐴퐴퐴) − (Σ퐴퐵퐴퐵퐴 + Σ퐴퐵퐵퐵퐴 + Σ퐵퐴퐵퐴퐴 + Σ퐵퐴퐴퐴퐴) = (Σ퐵퐴퐴퐵퐴 + Σ퐵퐴퐵퐵퐴 + Σ퐴퐵퐵퐴퐴 + Σ퐴퐵퐴퐴퐴) + (Σ퐴퐵퐴퐵퐴 + Σ퐴퐵퐵퐵퐴 + Σ퐵퐴퐵퐴퐴 + Σ퐵퐴퐴퐴퐴) and we performed binomial tests to evaluate whether the difference between both elements framing the minus sign of each equation was significant, in order to assign a “+”, “-” or “0” sign. 1.2. DFOIL, a 5-taxon extension of D-statistics, rarely solves the issue raised by ghost introgressions. In addition to the D-statistics, we tested the DFOIL, a 5-taxon test derived from the D-statistics allowing to determine the direction of gene flows. In Pease et al (2015), 8 unique patterns of DFOIL were linked to different polarized introgression events (with an explicit direction) and another 2 to paires of non polarized (both directions) events (see Table 1. -
Review Species List of the European Herpetofauna – 2020 Update by the Taxonomic Committee of the Societas Europaea Herpetologi
Amphibia-Reptilia 41 (2020): 139-189 brill.com/amre Review Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica Jeroen Speybroeck1,∗, Wouter Beukema2, Christophe Dufresnes3, Uwe Fritz4, Daniel Jablonski5, Petros Lymberakis6, Iñigo Martínez-Solano7, Edoardo Razzetti8, Melita Vamberger4, Miguel Vences9, Judit Vörös10, Pierre-André Crochet11 Abstract. The last species list of the European herpetofauna was published by Speybroeck, Beukema and Crochet (2010). In the meantime, ongoing research led to numerous taxonomic changes, including the discovery of new species-level lineages as well as reclassifications at genus level, requiring significant changes to this list. As of 2019, a new Taxonomic Committee was established as an official entity within the European Herpetological Society, Societas Europaea Herpetologica (SEH). Twelve members from nine European countries reviewed, discussed and voted on recent taxonomic research on a case-by-case basis. Accepted changes led to critical compilation of a new species list, which is hereby presented and discussed. According to our list, 301 species (95 amphibians, 15 chelonians, including six species of sea turtles, and 191 squamates) occur within our expanded geographical definition of Europe. The list includes 14 non-native species (three amphibians, one chelonian, and ten squamates). Keywords: Amphibia, amphibians, Europe, reptiles, Reptilia, taxonomy, updated species list. Introduction 1 - Research Institute for Nature and Forest, Havenlaan 88 Speybroeck, Beukema and Crochet (2010) bus 73, 1000 Brussel, Belgium (SBC2010, hereafter) provided an annotated 2 - Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, species list for the European amphibians and Salisburylaan 133, 9820 Merelbeke, Belgium non-avian reptiles. -
Ghost Lineage and Other Stories
Ghost Lineage and Other Stories by Eric John Sandve A Dissertation submitted to the Graduate School-Newark Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Fine Arts in Creative Writing Rutgers University – Newark MFA Program Written under the direction of Akhil Sharma And approved by Jayne Anne Phillips [Director’s Signature] ________________________________ [Advisor’s Signature] _________________________________ Newark, New Jersey May 2014 © 2014 Eric Sandve All Rights Reserved ii Contents Troubled Little Heaps ....................................................................................................................... 1 Better People ................................................................................................................................... 8 Mihaly Gozer Needs a Drink .......................................................................................................... 14 August of our Era ........................................................................................................................... 16 Ghost Lineage ................................................................................................................................ 63 iii 1 Troubled Little Heaps Marty refused to put on his insulin pump. He was terrified of it. Mom called me upstairs after Marty ran into George’s bedroom. We were standing in the hallway that connected the bedrooms to the rest of the house when she showed the pump to me. It sat