Container Security Powered by Devsecops- Happiest Minds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracle VM Virtualbox Container Domains for SPARC Or X86
1 <Insert Picture Here> Virtualisierung mit Oracle VirtualBox und Oracle Solaris Containern Detlef Drewanz Principal Sales Consultant SAFE HARBOR STATEMENT The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. In addition, the following is intended to provide information for Oracle and Sun as we continue to combine the operations worldwide. Each country will complete its integration in accordance with local laws and requirements. In the EU and other non-EU countries with similar requirements, the combinations of local Oracle and Sun entities as well as other relevant changes during the transition phase will be conducted in accordance with and subject to the information and consultation requirements of applicable local laws, EU Directives and their implementation in the individual members states. Sun customers and partners should continue to engage with their Sun contacts for assistance for Sun products and their Oracle contacts for Oracle products. 3 So .... Server-Virtualization is just reducing the number of boxes ? • Physical systems • Virtual Machines Virtualizationplattform Virtualizationplattform 4 Virtualization Use Workloads and Deployment Platforms -
Systematic Evaluation of Sandboxed Software Deployment for Real-Time Software on the Example of a Self-Driving Heavy Vehicle
Systematic Evaluation of Sandboxed Software Deployment for Real-time Software on the Example of a Self-Driving Heavy Vehicle Philip Masek1, Magnus Thulin1, Hugo Andrade1, Christian Berger2, and Ola Benderius3 Abstract— Companies developing and maintaining software-only products like web shops aim for establishing persistent links to their software running in the field. Monitoring data from real usage scenarios allows for a number of improvements in the software life-cycle, such as quick identification and solution of issues, and elicitation of requirements from previously unexpected usage. While the processes of continuous integra- tion, continuous deployment, and continuous experimentation using sandboxing technologies are becoming well established in said software-only products, adopting similar practices for the automotive domain is more complex mainly due to real-time and safety constraints. In this paper, we systematically evaluate sandboxed software deployment in the context of a self-driving heavy vehicle that participated in the 2016 Grand Cooperative Driving Challenge (GCDC) in The Netherlands. We measured the system’s scheduling precision after deploying applications in four different execution environments. Our results indicate that there is no significant difference in performance and overhead when sandboxed environments are used compared to natively deployed software. Thus, recent trends in software architecting, packaging, and maintenance using microservices encapsulated in sandboxes will help to realize similar software and system Fig. 1. Volvo FH16 truck from Chalmers Resource for Vehicle Research engineering for cyber-physical systems. (Revere) laboratory that participated in the 2016 Grand Cooperative Driving Challenge in Helmond, NL. I. INTRODUCTION Companies that produce and maintain software-only prod- ucts, i.e. -
An Empirical Study of Virtualization Versus Lightweight Containers
On Exploiting Page Sharing in a Virtualized Environment - an Empirical Study of Virtualization Versus Lightweight Containers Ashish Sonone, Anand Soni, Senthil Nathan, Umesh Bellur Department of Computer Science and Engineering IIT Bombay Mumbai, India ashishsonone, anandsoni, cendhu, [email protected] Abstract—While virtualized solutions are firmly entrenched faulty application can result in the failure of all applications in cloud data centers to provide isolated execution environ- executing on that machine. On the other hand, each virtual ments, the chief overhead it suffers from is that of memory machine runs its own OS and hence, a faulty application consumption. Even pages that are common in multiple virtual machines (VMs) on the same physical machine (PM) are not cannot crash the host OS. Further, each application can shared and multiple copies exist thereby draining valuable run on any customized and optimized guest OS which is memory resources and capping the number of VMs that can be different from the host OS. For example, each guest OS can instantiated on a PM. Lightweight containers (LWCs) on the run its own I/O scheduler which is optimized for the hosted other hand does not suffer from this situation since virtually application. In addition to this, the hypervisor provides many everything is shared via Copy on Write semantics. As a result the capacity of a PM to host LWCs is far higher than hosting other features such as live migration of virtual machines, equivalent VMs. In this paper, we evaluate a solution using high availability using periodic checkpointing and storage uKSM to exploit memory page redundancy amongst multiple migration. -
ISSN: 1804-0527 (Online) 1804-0519 (Print) Vol.8 (2), PP. 63-69 Introduction During the Latest Years, a Lot of Projects Have Be
Perspectives of Innovations, Economics & Business, Volume 8, Issue 2, 201 1 EVALUATION OF PERFORMANCE OF SOLARIS TRUSTED EXTENSIONS USING CONTAINERS TECHNOLOGY EVALUATION OF PERFORMANCE OF GENTI DACI SOLARIS TRUSTED EXTENSIONS USING CONTAINERS TECHNOLOGY Faculty of Information Technology Polytechnic University of Tirana, Albania UDC: 004.45 Key words: Solaris Containers. Abstract: Server and system administrators have been concerned about the techniques on how to better utilize their computing resources. Today, there are developed many technologies for this purpose, which consists of running multiple applications and also multiple operating systems on the same hardware, like VMWARE, Linux-VServer, VirtualBox, Xen, etc. These systems try to solve the problem of resource allocation from two main aspects: running multiple operating system instances and virtualizing the operating system environment. Our study presents an evaluation of scalability and performance of an operating system virtualization technology known as Solaris Containers, with the main objective on measuring the influence of a security technology known as Solaris Trusted Extensions. Solaris. We will study its advantages and disadvantages and also the overhead that it introduces to the scalability of the system’s main advantages. ISSN: 1804 -0527 (online) 1804 -0519 (print) Vol.8 (2), PP. 63 -69 Introduction administration because there are no multiple operating system instances in a system. During the latest years, a lot of projects have been looking on virtualizing operating system Operating systems environments, such as FreeBSD Jail, Linux- VServer, Virtuozzo etc. This virtualization technique is based in using only one underlying Solaris/OpenSolaris are Operating Systems operating system kernel. Using this paradigm the performing as the main building blocks of computer user has the possibility to run multiple applications systems; they provide the interface between user in isolation from each other. -
The Server Virtualization Landscape, Circa 2007
ghaff@ illuminata.com Copyright © 2007 Illuminata, Inc. single user license Gordon R Haff Illuminata, Inc. TM The Server Virtualization Bazaar, Circa 2007 Inspired by both industry hype and legitimate customer excitement, many Research Note companies seem to have taken to using the “virtualization” moniker more as the hip phrase of the moment than as something that’s supposed to convey actual meaning. Think of it as “eCommerce” or “Internet-enabled” for the Noughts. The din is loud. It doesn’t help matters that virtualization, in the broad sense of “remapping physical resources to more useful logical ones,” spans a huge swath of Gordon Haff technologies—including some that are so baked-in that most people don’t even 27 July 2007 think of them as virtualization any longer. Personally licensed to Gordon R Haff of Illuminata, Inc. for your personal education and individual work functions. Providing its contents to external parties, including by quotation, violates our copyright and is expressly forbidden. However, one particular group of approaches is capturing an outsized share of the limelight today. That would, of course, be what’s commonly referred to as “server virtualization.” Although server virtualization is in the minds of many inextricably tied to the name of one company—VMware—there are many companies in this space. Their offerings include not only products that let multiple virtual machines (VMs) coexist on a single physical server, but also related approaches such as operating system (OS) virtualization or containers. In the pages that follow, I offer a guide to today’s server virtualization bazaar— which at first glance can perhaps seem just a dreadfully confusing jumble. -
Virtual Containers: Asset Management Best Practices and Licensing Considerations
Virtual Containers: Asset Management Best Practices and Licensing Considerations Virtual containers have seen tremendous adoption and growth within all industries. However, in terms of IT asset management, cont- ainers are not being managed and are an unknown area of risk for many of our clients. Because it is a newer technology, there is very little information about managing containers and how to address the emerging SAM & ITAM challenges they bring. Due to this lack of public information, Anglepoint has published this whitepaper on navigating the world of containers, with an empha- sis on asset management and licensing. We will cover everything from the history of containers, to what containers are, the benefits of containers, asset management best practices, and some publisher-specific licensing considerations. A BRIEF HISTORY OF VIRTUAL CONTAINERS The first proper containers came from the Linux world as LXC (LinuX Containers) in 2008. However, it wasn’t until 2013 that containers entered the IT public consciousness, when Docker came onto the scene with Enterprise usage in mind. Even then, though, it was more of an enthusiast’s technology. In 2015, Google released and open sourced Kubernetes which manages and ‘orchestrates’ containers. However, it wasn’t until 2017 that Docker and Kubernetes had matured enough to be considered for production use within corporate environments. 2017 also saw VMware, Microsoft, and Amazon beginning to support and offer solutions for Kubernetes and Docker on their top-tier cloud infrastructure. WHAT IS A CONTAINER? Often, people conflate the term ‘container’ with multiple technologies that make up the container ecosystem. Let’s look at what a modern container is at the most fundamental level. -
Large-Scale Cluster Management at Google with Borg Abhishek Verma† Luis Pedrosa‡ Madhukar Korupolu David Oppenheimer Eric Tune John Wilkes Google Inc
Large-scale cluster management at Google with Borg Abhishek Vermay Luis Pedrosaz Madhukar Korupolu David Oppenheimer Eric Tune John Wilkes Google Inc. Abstract config file command-line Google’s Borg system is a cluster manager that runs hun- borgcfg webweb browsers tools dreds of thousands of jobs, from many thousands of differ- ent applications, across a number of clusters each with up to Cell BorgMaster tens of thousands of machines. BorgMasterBorgMaster UIUI shard shard BorgMasterBorgMaster read/UIUIUI shard shard It achieves high utilization by combining admission con- shard Scheduler persistent store trol, efficient task-packing, over-commitment, and machine scheduler (Paxos) link shard linklink shard shard sharing with process-level performance isolation. It supports linklink shard shard high-availability applications with runtime features that min- imize fault-recovery time, and scheduling policies that re- duce the probability of correlated failures. Borg simplifies life for its users by offering a declarative job specification Borglet Borglet Borglet Borglet language, name service integration, real-time job monitor- ing, and tools to analyze and simulate system behavior. We present a summary of the Borg system architecture and features, important design decisions, a quantitative anal- Figure 1: The high-level architecture of Borg. Only a tiny fraction ysis of some of its policy decisions, and a qualitative ex- of the thousands of worker nodes are shown. amination of lessons learned from a decade of operational experience with it. cluding with a set of qualitative observations we have made from operating Borg in production for more than a decade. 1. Introduction The cluster management system we internally call Borg ad- 2. -