Global Fibre Supply Study Working Paper Series

Total Page:16

File Type:pdf, Size:1020Kb

Global Fibre Supply Study Working Paper Series GLOBAL FIBRE SUPPLY STUDY WORKING PAPER SERIES Factors Affecting Productivity of Tropical Forest Plantations: Acacia, Eucalypt, Teak, Pine Klara Vichnevetskaia Working Paper GFSS/WP/02 July 1997 Food and Agriculture Organization of the United Nations GLOBAL FIBRE SUPPLY STUDY WORKING PAPER SERIES Series Editors: Peter N. Duinker Faculty of Forestry, Lakehead University, Thunder Bay, Canada Gary Bull Forest Products Division, Forestry Department, FAO, Rome Working Paper GFSS/WP/02 Factors Affecting Productivity of Tropical Forest Plantations: Acacia, Eucalypt, Teak, Pine by Klara Vichnevetskaia (Faculty of Forestry, University of Toronto, Toronto, Canada) July 1997 Food and Agriculture Organization of the United Nations The designation employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1997 FOREWORD In late 1995, the FAO Forestry Department initiated the Global Fibre Supply Study (GFSS) with an outlook to the year 2050. The study was recommended by the FAO Advisory Committee on Pulp and Paper (now the Advisory Committee on Paper and Wood Products). The general objective of the study is to contribute reliable data, information, forecasts and analysis of industrial fibre sources in order to promote sustainable forest management. The GFSS will include a compilation of the latest available inventory data, including recovered and non-wood fibre, focusing primarily on the sources of industrial fibre as raw material for the sawmilling, wood-based panels, and pulp and paper industries. It will also include a projection and analysis of future developments in fibre supply, based on explicit consideration of the major factors affecting supply. The GFSS is unique among FAO studies in that special emphasis is placed on collection and compilation of fibre volume inventory and growth data for the developing regions - Africa, Asia-Pacific, and Latin America and the Caribbean. The study complements other FAO work, such as the Asia-Pacific Forestry Sector Outlook Study and the upcoming Forest Resources Assessment 2000. FAO is also updating its statistics on forest plantations and developing a method for estimating fibre volumes from non-forest areas in the tropical regions. Available data from these studies will be included in the GFSS. The major products of the GFSS will include: · A database accessible on-line through the Internet providing estimates of commercial wood volumes from natural, semi-natural and plantation forests; · An on-line interactive fibre-supply model incorporating key determinants of supply; · A statistical and descriptive report on the data and three fibre-supply scenarios which are based on factors deemed to be the most critical; · A working paper describing in detail the methods for data compilation, gap filling, data validation, forecasting and definitions, survey forms and country list; · A series of additional working papers on sustainable forest management, improved forest productivity from industrial forest plantations, fibre-supply modelling, recovered and non- wood fibre, and other topics; and · An issue of Unasylva, FAO's quarterly journal on forestry and the forest industry, dedicated to the theme of global fibre supply. This paper, solicited by the GFSS and prepared by Klara Vichnevetskaia, summarizes the world literature on productivity gains in plantations from tree improvement and better silviculture practices. We sincerely hope that it contributes productively to the world-wide dialogue on sustainable forest management for fibre and other values. Olman Serrano Chief Wood and Non-wood Products Utilization Branch Forest Products Division iii ACKNOWLEDGEMENTS This series of working papers have seen the contribution of many silent partners. Our colleagues in the Forestry Department provided much needed advice on several issues. In addition, there have been many outside reviewers from different research institutions and technical cooperation agencies who have provided valuable information. We also want to thank our special assistant Ms Elisa Rubini who guided each report through the many technical hurdles in document preparation. iv PREFACE Biophysical science is a necessary input into any dialogue on forest policy formulation. While it is necessary, it is of course insufficient - policy must also be informed by the social sciences and formulated in a consultative, participatory process. The most powerful forms of biophysical science for policy-making are those which take an anticipatory view of the world, that is, forms of science which attempt to glimpse into the future for insights into how the world functions and how we might choose and shape a desirable future. The Global Fibre Supply Study (GFSS) of the Forestry Department at FAO is such a study. Its objective is to contribute reliable data, information and analysis of industrial fibre sources around the world for use in international forest-policy dialogues. In addition to the basic forest resources data and information, the GFSS will present a series of scenarios which depict possible futures for fibres supplies around the world. The projections are generated by a few biophysical accounting models that simulate, under specific assumptions, how much industrial fibre should be available through the year 2050. The assumptions underlying each scenario are critical. We know that future fibre supplies will be affected by, among other things: (a) silvicultural and tree-breeding strategies; (b) the availability of non-wood and recovered fibres; and (c) restrictions on timber harvests due to considerations for social and ecological forest values. The process of making useful assumptions must be informed by what we know or surmise is both possible and probable in the future of such factors. In the case of tree improvement and silvicultural practices, we might well assume a business-as-usual scenario, where the future is an extension of the recent past and present. However, we might well also try out the assumption that the theoretical gains in fibre production shown by research to be possible are actually implemented across the board. The underlying assertion, however, is that the forecasting exercise can be improved if we apply species- and region-specific gains from certain tree improvement and silvicultural measures, rather than just applying the same average gain for all species in all regions. For example, it is likely unreasonable to expect gains from improved tree spacing in plantations of Eucalyptus spp. in Africa to match those from improved symbiotic associations of Acacia spp. in Asia. Such a ‘weighted average’ approach should improve the overall reliability of the assumptions used to create the alternative scenarios. It was with this view in mind that the GFSS sponsored the literature review underlying this paper. Peter Duinker August 1997 v TABLE OF CONTENTS FOREWORD................................................................................................................................................. iii PREFACE........................................................................................................................................................v 1. INTRODUCTION ...................................................................................................................................... 1 2. ACACIA PLANTATIONS ......................................................................................................................... 1 2.1 PLANTATION YIELD ESTIMATION................................................................................................................ 2 2.2 COMMON FACTORS .................................................................................................................................... 2 2.2.1 Species/provenances matching to site.................................................................................................... 2 2.2.2 Spacing................................................................................................................................................... 8 2.2.3 Factors unique for acacia plantations ..................................................................................................10 2.2.4 Seed pre-treatment ...............................................................................................................................14 3. EUCALYPT PLANTATIONS ..................................................................................................................16 3.1 COMMON FACTORS ...................................................................................................................................16 3.1.1 Species/provenances matching to site...................................................................................................16
Recommended publications
  • 1 Noms Vernaculaires : Bengali (Akash Mono,Sonajhuri); English
    Fiche présentation arbre : Acacia auriculiformis Plante invasive (ISSG - PIER) : Low risk. A.Cunn. ex Benth. (°) 5 ↑ Utilisations (°) Nom scientifique. Auteur © Benjamin Lisan Noms communs : Acacia auriculiformis Noms vernaculaires : Bengali (akash mono,sonajhuri); English (Japanese acacia,Australian wattle,coast wattle,Darwin black wattle,earleaf acacia,earpod black wattle,earpod wattle,wattle,tan wattle,northern black wattle,Papua wattle); Filipino (auri); Hindi (sonajhuri,kasia,akashmoni,northern black wattle); Indonesian (akasai,kasia,akasia,ki hia); Malay (kasia,akasia kuning); Swahili (mkesia); Thai (krathin-narong); Trade name (Australian wattle); Vietnamese (smach’té:hes) (Source : http://www.worldagroforestry.org/treedb/AFTPDFS/Acacia_auriculiformis.PDF). Noms commerciaux : Synonyme(s) : Distribution, répartition et régions géographiques : Carte de la répartition géographique mondiale. (Source : http://www.cabi.org/isc/datasheet/2157). Latitudes géographiques (°N/ °S): Fourchette d’altitudes : On la trouve entre le niveau de la mer et 1000 m d’altitude (Sourc e : CIRAD). Origine : originaire d'Australie, d'Indonésie et de Papouasie-Nouvelle-Guinée (Source : Wikipedia Fr). Acacia auriculiformis est originaire du Nord de Acacia auriculiformis de 10 ans sur termitière l’Australie, de Papouasie Nouvelle-Guinée et d’Indonésie (Source : CIRAD). (Korhogo) (image CIRAD). Régions d'introduction connues : C’est une espèce qui a été largement plantée de par le monde tropical et subtropical : Inde, Asie du Sud-est, Afrique, Amérique du Sud
    [Show full text]
  • ACACIA MANGIUM Page 1Of 4
    ACACIA MANGIUM Page 1of 4 Family: FABACEAE-MIMOSOIDEAE (angiosperm) Scientific name(s): Acacia mangium Racosperma mangium (synonymous) Commercial restriction: no commercial restriction Note: Fast-growing species; woods presently commercialized come from plantations. WOOD DESCRIPTION LOG DESCRIPTION Color: brown Diameter: from 30 to 60 cm Sapwood: clearly demarcated Thickness of sapwood: Texture: medium Floats: yes Grain: straight Log durability: low (must be treated) Interlocked grain: absent Note: Heart rot is common for some origins. Heartwood light brown, sometimes with olive brown shades. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,52 0,05 Crushing strength *: 46 MPa 3 MPa Monnin hardness *: 3,1 Static bending strength *: 105 MPa 6 MPa Coeff. of volumetric shrinkage: 0,37 % Modulus of elasticity *: 10800 MPa 900 MPa Total tangential shrinkage (TS): 7,0 % Total radial shrinkage (RS): 3,1 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 2,3 Fiber saturation point: 25 % Stability: stable Note: As it is frequently observed for many plantation species, physical and mechanical properties of this wood hardly vary and depend on origin and trees age. NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood. Sapwood must always be considered as non-durable against wood degrading agents. E.N. = Euro Norm Funghi (according to E.N. standards): class 3-4 - moderately to poorly durable Dry wood borers: susceptible Termites (according to E.N.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • MOUNT AMOS South Pacific Ocean
    Refer to this map as: Wet Tropics Bioregion MOUNT AMOS 1:50 000 SERIES WTMAveg Vegetation Survey QUEENSLAND SHEET 7966-1 EDITION 1 3 13 14 15 16 17 18 19 20 21145°20' 22 23 24 25 26 27 28 29 330 145°25' 31 32 33 34 35 36 37 38 39 145°30' MOUNT COOK NATIONAL PARK 15°30' 15°30' 43 85 Dawson Reef 85 62 84 56 84 South 83 An nan R 83 54a ive 70e r 42a 70a 70e 54a 54a Osterland Reef 39a 54a 55a 54a 55a 64a 82 54a 54a Cowlishaw Reef 54a 55a 64a 39a 82 70a 70a 70e 54a 70a 70a 70e Esk 70e 70a 70a 59a 81 29b 3a 70e 26a 70a 39a 81 54a 135 68d 70e Mount McIntosh 26a 70a 70e Draper Patch 29b 29b 64a 55a 70e 70e 39a 29b 26a 82 54a 39a 68d 80 21a Grave Point 70e 70e 33a 54a 59a 39a 25c 54a 8280 ANNAN RIVER 68d 54a 68d59b 55a 21a 33a 64a Walker Bay 43 70e 54a R 29b 39a 26a 54a i 47e 59a v 59a 68d e 48a 39a 77 Pacific 70e r 39a 29b 26a 50a 79 59a 70a 70e 26a 68d 29b 26a 70a 26a 70e 54a 59a 79 42a 33a 26a 55a 55a 68d 42a 48a 59a 54a54a 54a 110 48a 33a 55a 68d68d 42a 47e 29b 39a 54a 68d 59a 70e 55a 39a 62a 39a 42a 191 68d 39a 29b 67c 3a 70a 62a 67c Walker Hill 68d 33a 55a 33a 33a 39a 33a 67c 59b 59b 26a 78 NATIONAL PARK 39a 50a 42a 33a 33a 62a 59a 33a 3a 33a 50a 59a 39a Walker Point 78 62a 42a 59a 48a 29b 39a 26a 68d 48a 48a 3a 33a 59a 39a 3a 57a 33a 59b 39a 33a 67c 3a 59a 67c 68d 67c 67c 59a42a 26a 59a 39a 33a 33a 67c 64a 67c 59a 33a 59b 50a 76 57a 48a 67c 26a 77 33a 62a 42a 38 67c 67c 33a 39a 48a 67c 33a 67c 50a 39a 68d 62a 39a 67c 57a 77 61c 33a 29b 48a 67c 57 33a 33a 67c 29b 68d 42a 67c 67c 67c 42a 33a 39a 67c 67c 15°35' 59a 42a 64a 15°35' 50a 48a 33a
    [Show full text]
  • GDV Field Assessment.Pdf
    Miralga Groundwater Dependent Vegetation Assessment Atlas Iron Pty Ltd December 2019 Page 2 of 24 Introduction and Background Atlas Iron Pty Ltd (Atlas Iron) are currently exploring the feasibility of the Miralga Project and require the use and reactivation of several existing groundwater bores, ALB0006, ALB0009, ALB0066, ALB0067, ALB0010, ALB0008, ALB0038, ALB0039 and ALB0041, to continue proposed on-ground works at Miralga (Figure 1). Prior to abstracting groundwater, Atlas Iron have requested an assessment of Groundwater Dependent Vegetation within a stretch of Shaw River, Six Mile Creek, Sulphur Springs Creek and an unnamed creek, totalling approximately 30 kilometres (km) of riparian vegetation. The purpose of the assessment is to determine the true extent of GDVs, provide fine-scale mapping of GDV units and search for phreatophytic flora species that may be adversely impacted by groundwater abstraction. The key species for this assessment is Melaleuca argentea which is known to access groundwater at or close to the surface. Objective and Scope of Work The overarching objective of the Project was to refine the GDV mapping to fine-scale map the functional vegetation units in the identified areas (Figure 1). This objective was met via the following: • A desktop assessment to further understand vegetation unit VT05 and the key phreatophytic species previously documented as occurring within the vegetation unit. • A site visit to map the functional units along the Study Area. We investigated VT05 within the drawdown contour of 0.5 m and a further 1 km north and south along Shaw River and Sulphur Springs Creek. The only exceptions to this were: - The area that contains bore ALB0008.
    [Show full text]
  • Palatability of Plants to Camels (DBIRD NT)
    Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2.
    [Show full text]
  • Exempted Trees List
    Prohibited Plants List The following plants should not be planted within the City of North Miami. They do not require a Tree Removal Permit to remove. City of North Miami, 2017 Comprehensive List of Exempted Species Pg. 1/4 Scientific Name Common Name Abrus precatorius Rosary pea Acacia auriculiformis Earleaf acacia Adenanthera pavonina Red beadtree, red sandalwood Aibezzia lebbek woman's tongue Albizia lebbeck Woman's tongue, lebbeck tree, siris tree Antigonon leptopus Coral vine, queen's jewels Araucaria heterophylla Norfolk Island pine Ardisia crenata Scratchthroat, coral ardisia Ardisia elliptica Shoebutton, shoebutton ardisia Bauhinia purpurea orchid tree; Butterfly Tree; Mountain Ebony Bauhinia variegate orchid tree; Mountain Ebony; Buddhist Bauhinia Bischofia javanica bishop wood Brassia actino-phylla schefflera Calophyllum antillanum =C inophyllum Casuarina equisetifolia Australian pine Casuarina spp. Australian pine, sheoak, beefwood Catharanthus roseus Madagascar periwinkle, Rose Periwinkle; Old Maid; Cape Periwinkle Cestrum diurnum Dayflowering jessamine, day blooming jasmine, day jessamine Cinnamomum camphora Camphortree, camphor tree Colubrina asiatica Asian nakedwood, leatherleaf, latherleaf Cupaniopsis anacardioides Carrotwood Dalbergia sissoo Indian rosewood, sissoo Dioscorea alata White yam, winged yam Pg. 2/4 Comprehensive List of Exempted Species Scientific Name Common Name Dioscorea bulbifera Air potato, bitter yam, potato vine Eichhornia crassipes Common water-hyacinth, water-hyacinth Epipremnum pinnatum pothos; Taro
    [Show full text]
  • APFORGEN Priority Species Information Sheet
    APFORGEN Priority Species Information Sheet Acacia mangium Willd. nitrogen fixation; ornamental tree; for intercropping with maize or peanuts; leaves as soil mulch. Family: Fabaceae (bean family); Subfamily: Mimosoideae Reproductive biology: The species flowers precociously Common Name: black wattle, brown salwood, hickory producing viable seed within 24 months after planting wattle, mangium, sabah salwood, Akasia, Coast Myall, but commercial quantities are obtained after 4 years. It Mountain Brigalow, Sally Wattle requires about 6-7 months from the onset of flower buds to pod maturity. The tree is a hermaphrodite and generally Vernacular names: Filipino – maber; Indonesian – outcrosses, with a tendency towards selfing. Insects are mange hutan, nak, tongge hutan, tange hutan, laj, jerri; the general pollinators; active insect vectors are Trigona Malay – mangium; Polynesia – arr; Spanish – zamorano; and Apis spp. It flowers in May and the seed matures in Thai – kra thin tepa, krathin-thepa; Pohnpei – tuhkehn October-December in its native range in Australia. Mature pwelmwahu; fruits can be collected in July in Indonesia and late September in Papua New Guinea. Somatic chromosome Trade name: brown salwood number is 2n=26. Description: Evergreen tree, 25-35 m in height. Bole in older Genetic diversity and conservation status: Natural trees branchless for up to 15 m, fluted, up to 90 cm in stands occur in Northern Queensland, the Western Province diameter. Leaves (phyllodes) large, 25 cm in length and 3.5- of Papua New Guinea and the Indonesian provinces 10 cm in width. Inflorescence is composed of many tiny of Irian Jaya and Maluku. These are examples of in white or cream flowers in spikes.
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; rhamdy@sci.cu.edu.eg * Correspondence: raniaali@sci.cu.edu.eg Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • Northern Territory NT Page 1 of 204 21-Jan-11 Species List for NRM Region Northern Territory, Northern Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Pinal AMA Low Water Use/Drought Tolerant Plant List
    Arizona Department of Water Resources Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Pinal Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Pinal Active Management Area (AMA) Low-Water-Use/Drought-Tolerant Plants List is an adoption of the Phoenix AMA Low-Water-Use/Drought-Tolerant Plants List (Phoenix List). The Phoenix List was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn.
    [Show full text]
  • Sites of Botanical Significance Vol1 Part1
    Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Prepared By Matthew White, David Albrecht, Angus Duguid, Peter Latz & Mary Hamilton for the Arid Lands Environment Centre Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Matthew White 1 David Albrecht 2 Angus Duguid 2 Peter Latz 3 Mary Hamilton4 1. Consultant to the Arid Lands Environment Centre 2. Parks & Wildlife Commission of the Northern Territory 3. Parks & Wildlife Commission of the Northern Territory (retired) 4. Independent Contractor Arid Lands Environment Centre P.O. Box 2796, Alice Springs 0871 Ph: (08) 89522497; Fax (08) 89532988 December, 2000 ISBN 0 7245 27842 This report resulted from two projects: “Rare, restricted and threatened plants of the arid lands (D95/596)”; and “Identification of off-park waterholes and rare plants of central Australia (D95/597)”. These projects were carried out with the assistance of funds made available by the Commonwealth of Australia under the National Estate Grants Program. This volume should be cited as: White,M., Albrecht,D., Duguid,A., Latz,P., and Hamilton,M. (2000). Plant species and sites of botanical significance in the southern bioregions of the Northern Territory; volume 1: significant vascular plants. A report to the Australian Heritage Commission from the Arid Lands Environment Centre. Alice Springs, Northern Territory of Australia. Front cover photograph: Eremophila A90760 Arookara Range, by David Albrecht. Forward from the Convenor of the Arid Lands Environment Centre The Arid Lands Environment Centre is pleased to present this report on the current understanding of the status of rare and threatened plants in the southern NT, and a description of sites significant to their conservation, including waterholes.
    [Show full text]