The Role of Selenium in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Selenium in Health and Disease The Role of Selenium in Health and Disease • Catherine Méplan Hughes and J. David The Role of Selenium in Health and Disease Edited by Catherine Méplan and David J. Hughes Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients The Role of Selenium in Health and Disease The Role of Selenium in Health and Disease Special Issue Editors Catherine M´eplan David J. Hughes MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editors Catherine Meplan´ David J. Hughes Newcastle University University College Dublin UK Ireland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) (available at: https://www.mdpi.com/journal/nutrients/special issues/ Role Selenium Health Disease). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-146-5 (Hbk) ISBN 978-3-03936-147-2 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Catherine M´eplanand David J. Hughes The Role of Selenium in Health and Disease: Emerging and Recurring Trends Reprinted from: Nutrients 2020, 12, 1049, doi:10.3390/nu12041049 .................. 1 Ellen C.D. K ¨uhn-Heid,Eike C. K ¨uhn,Julia Ney, Sebastian Wendt, Julian Seelig, Christian Schwiebert, Waldemar B. Minich, Christian Stoppe and Lutz Schomburg Selenium-Binding Protein 1 Indicates Myocardial Stress and Risk for Adverse Outcome in Cardiac Surgery Reprinted from: Nutrients 2019, 11, 2005, doi:10.3390/nu11092005 .................. 5 Lutz Schomburg, Marju Orho-Melander, Joachim Struck, Andreas Bergmann and Olle Melander Selenoprotein-P Deficiency Predicts Cardiovascular Disease and Death Reprinted from: Nutrients 2019, 11, 1852, doi:10.3390/nu11081852 .................. 17 Daniel J. Torres, Matthew W. Pitts, Ann C. Hashimoto and Marla J. Berry Agrp-Specific Ablation of Scly Protects against Diet-Induced Obesity and Leptin Resistance Reprinted from: Nutrients 2019, 11, 1693, doi:10.3390/nu11071693 .................. 29 Chia-Wen Lu, Hao-Hsiang Chang, Kuen-Cheh Yang, Chien-Hsieh Chiang, Chien-An Yao and Kuo-Chin Huang Gender Differences with Dose–Response Relationship between Serum Selenium Levels and Metabolic Syndrome—A Case-Control Study Reprinted from: Nutrients 2019, 11, 477, doi:10.3390/nu11020477 .................. 45 Veronika Fedirko, Mazda Jenab, Catherine M´eplan, Jeb S. Jones, Wanzhe Zhu, Lutz Schomburg, Afshan Siddiq, Sandra Hybsier, Kim Overvad, Anne Tjønneland, et al. Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status Reprinted from: Nutrients 2019, 11, 935, doi:10.3390/nu11040935 ................... 57 David J. Hughes, Tereza Kunick´a, Lutz Schomburg, V´aclav Liˇska, Niall Swan and Pavel Souˇcek Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer Reprinted from: Nutrients 2018, 10, 1812, doi:10.3390/nu10111812 .................. 77 Jordan Sonet, Maurine Mosca, Katarzyna Bierla, Karolina Modzelewska, Anna Flis-Borsuk, Piotr Suchocki, Iza Ksiazek, Elzbieta Anuszewska, Anne-Laure Bulteau, Joanna Szpunar, Ryszard Lobinski and Laurent Chavatte Selenized Plant Oil Is an Efficient Source of Selenium for Selenoprotein Biosynthesis in Human Cell Lines Reprinted from: Nutrients 2019, 11, 1524, doi:10.3390/nu11071524 .................. 89 Sohayla A. Z. Ibrahim, Abdelhamid Kerkadi and Abdelali Agouni Selenium and Health: An Update on the Situation in the Middle East and North Africa Reprinted from: Nutrients 2019, 11, 1457, doi:10.3390/nu11071457 ..................103 v Olivia M. Guillin, Caroline Vindry, Th´eophile Ohlmann and Laurent Chavatte Selenium, Selenoproteins and Viral Infection Reprinted from: Nutrients 2019, 11, 2101, doi:10.3390/nu11092101 ..................117 Bingyu Ren, Min Liu, Jiazuan Ni and Jing Tian Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease Reprinted from: Nutrients 2018, 10, 1619, doi:10.3390/nu10111619 ..................151 vi About the Special Issue Editors Catherine M´eplan (Lecturer in genetics). Dr Meplan´ has worked at Newcastle University, UK since 2003. Her research interests focus on the application of nutrigenomics technologies to the understanding of the relationship between selenium status and various cancers. She has contributed to the discovery of the importance of genetic variations in selenoprotein genes on selenium bioavailability, as well as using combined transcriptomics and proteomics approaches to understand how selenium status affects molecular pathways involved in cancer development. She and Dr Hughes are currently collaborating on several European projects looking at the effects of interactions between inherited genetic variations and selenium status on disease risk. She is a member of the European Nutrigenomics network NUGO, and has worked in collaboration with many research groups on selenium research. Previously, she has worked on the p53 tumour suppressor protein and cancer at the Biomedical Research Centre (Dundee University, UK), and during her PhD in Biology at the WHO/International Agency for Research on Cancer (IARC, Lyon, France). She received her BSc and MSc in Molecular Biology from the University of Grenoble, France. David J. Hughes (Assistant Professor of Cancer Epidemiology). Dr Hughes is a Fellow of the Conway Institute in University College Dublin (UCD), Ireland. He currently leads several international multidisciplinary cohort studies of nutritional, genetic & microbial cancer molecular epidemiology. Dr Hughes is a PI in the European Prospective Investigation of Cancer and Nutrition (EPIC) and a member of its Gastrointestinal Cancer Working Group, a governing council member of the International Society for Selenium Research, and a member of the International Cancer Microbiome Consortium. Previously he has worked at the WHO/International Agency for Research on Cancer (IARC, Lyon, France), the Sanger Institute (Cambridge, England), and Imperial College (London, England). Dr Hughes received his BSc Biochemistry degree from the University of Leeds (England), his PhD in Medical Genetics from Queen’s University Belfast (Northern Ireland), and a Postgraduate Diploma in Health Professions Education from the RCSI (Dublin, Ireland). vii nutrients Editorial The Role of Selenium in Health and Disease: Emerging and Recurring Trends Catherine Méplan 1,* and David J. Hughes 2 1 School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 2 Cancer Biology and Therapeutics Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)191-208-7664 Received: 1 April 2020; Accepted: 6 April 2020; Published: 10 April 2020 In this Special Issue of Nutrients, “The Role of Selenium in Health and Disease” covers diverse diseases in the 8 original research articles and 2 reviews, such as cardiovascular disorders (CVD), metabolic syndrome, obesity, cancer, and viral infection, and highlights novel potential biomarkers of disease risk and prognosis. From a public health perspective, the different manuscripts emphasize the already known U-shaped dose-response relationship between selenium (Se) concentration and disease risk across different study populations from Europe [1–3], the Middle East and North Africa [4], and Taiwan [5]. These reports therefore strengthen the importance of developing more personalized nutritional advice targeted at individuals at risk of disease with low Se intake. The results presented in this Issue also emphasize a need for further research into the mechanisms by which Se levels, selenoprotein expression, and inherited genetic variation in selenoproteins and interacting pathway genes may affect molecular pathways that either prevent or contribute to disease development. This is explored in human cohort studies [1–3,5,6] and in animal [7] and in vitro models [8]. 1. Selenium, Cardiovascular Diseases, Metabolic Syndrome, and Obesity Although links between Se levels, selenoprotein expression, and CVD or lipid metabolism are well established [1,2], the mechanisms supporting these associations remain unclear. Two of the manuscripts presented in this Issue established, in distinct Northern European populations, two novel Se-related biomarkers of risk and prognosis for CVD. Schomburg et al. identified, in a Swedish human perspective cohort, a strong correlation between low baseline plasma levels of Selenoprotein P (SELENOP; the major Se-transporter) and risk for all-cause mortality, CVD mortality, and a first CVD event during the follow-up period of 9.3 (8.3–11) years [2]. Based on the
Recommended publications
  • The Selenium Recycling Enzyme Selenocysteine Lyase: Regulation and Physiological Role in Glucose and Lipid Metabolism
    THE SELENIUM RECYCLING ENZYME SELENOCYSTEINE LYASE: REGULATION AND PHYSIOLOGICAL ROLE IN GLUCOSE AND LIPID METABOLISM A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CELL AND MOLECULAR BIOLOGY MAY 2012 BY LUCIA ANDREIA SEALE Dissertation Committee: Marla J. Berry, Chairperson Robert A. Nichols Jun Pane‘e P. Reed Larsen E. Gordon Grau To my beloved parents Wilson & Madalena To my dear love André ii ACKNOWLEDGEMENTS A Ph.D. is a journey in a rough sea. As in all memorable expeditions, there is more to learn while traveling towards the final destination than at the destination itself. In several ways, it is the path and how you face the unexpected obstacles in this path that makes you a Doctor. The Ph.D. expedition does not allow an easy ride. While you travel through the waves and storms of your topic, figuring out a lot on and about yourself, you also encounter along the way people that make your stressful journey happier, nicer, safer, funnier and – why not – more challenging. They provided the emotional background that is not described in a scientific document. In my Ph.D. journey, these are the people about whom I’ll talk years ahead to friends, to whom I will silently smile when the nostalgic waves of the Ph.D. path break in the shores of my life. They are the unforgettable people that allowed me to arrive safe and sound in Doctorland. First and foremost, my greatest acknowledgement and gratitude goes to Dr.
    [Show full text]
  • MPO) in Inflammatory Communication
    antioxidants Review The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication Yulia Kargapolova * , Simon Geißen, Ruiyuan Zheng, Stephan Baldus, Holger Winkels * and Matti Adam Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 North Rhine-Westphalia, Germany; [email protected] (S.G.); [email protected] (R.Z.); [email protected] (S.B.); [email protected] (M.A.) * Correspondence: [email protected] (Y.K.); [email protected] (H.W.) Abstract: Myeloperoxidase is a signature enzyme of polymorphonuclear neutrophils in mice and humans. Being a component of circulating white blood cells, myeloperoxidase plays multiple roles in various organs and tissues and facilitates their crosstalk. Here, we describe the current knowledge on the tissue- and lineage-specific expression of myeloperoxidase, its well-studied enzymatic activity and incoherently understood non-enzymatic role in various cell types and tissues. Further, we elaborate on Myeloperoxidase (MPO) in the complex context of cardiovascular disease, innate and autoimmune response, development and progression of cancer and neurodegenerative diseases. Keywords: myeloperoxidase; oxidative burst; NETs; cellular internalization; immune response; cancer; neurodegeneration Citation: Kargapolova, Y.; Geißen, S.; Zheng, R.; Baldus, S.; Winkels, H.; Adam, M. The Enzymatic and Non-Enzymatic Function of 1. Introduction. MPO Conservation Across Species, Maturation in Myeloid Progenitors, Myeloperoxidase (MPO) in and its Role in Immune Responses Inflammatory Communication. Myeloperoxidase (MPO) is a lysosomal protein and part of the organism’s host-defense Antioxidants 2021, 10, 562. https:// system. MPOs’ pivotal function is considered to be its enzymatic activity in response to doi.org/10.3390/antiox10040562 invading pathogenic agents.
    [Show full text]
  • Lncrna-MEG3 Functions As Ferroptotic Promoter to Mediate OGD Combined High Glucose-Induced Death of Rat Brain Microvascular Endothelial Cells Via the P53-GPX4 Axis
    LncRNA-MEG3 functions as ferroptotic promoter to mediate OGD combined high glucose-induced death of rat brain microvascular endothelial cells via the p53-GPX4 axis Cheng Chen Xiangya Hospital Central South University Yan Huang Xiangya Hospital Central South University Pingping Xia Xiangya Hospital Central South University Fan Zhang Xiangya Hospital Central South University Longyan Li Xiangya Hospital Central South University E Wang Xiangya Hospital Central South University Qulian Guo Xiangya Hospital Central South University Zhi Ye ( [email protected] ) Xiangya Hospital Central South University https://orcid.org/0000-0002-7678-0926 Research article Keywords: lncRNA-MEG3, p53, ferroptosis, ischemia, GPX4, OGD, hyperglycemia, Posted Date: May 18th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-28622/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background Individuals with diabetes are exposed to a higher risk of perioperative stroke than non- diabetics mainly due to persistent hyperglycemia. lncRNA-MEG3 (long non-coding RNA maternally expressed gene 3) has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of lncRNA-MEG3 in diabetic brain ischemic injury remain unclear. Results In this study, RBMVECs (the rat brain microvascular endothelial cells) were exposed to 6 h of OGD (oxygen and glucose deprivation), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased lncRNA-MEG3 expression occurred after the injury induced by OGD combined with hyperglycemic treatment.
    [Show full text]
  • Selenium Vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2019 Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase Michael Johnstone University of Central Florida Part of the Biotechnology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Johnstone, Michael, "Selenium vs. Sulfur: Investigating the Substrate Specificity of a Selenocysteine Lyase" (2019). Electronic Theses and Dissertations, 2004-2019. 6511. https://stars.library.ucf.edu/etd/6511 SELENIUM VS. SULFUR: INVESTIGATING THE SUBSTRATE SPECIFICITY OF A SELENOCYSTEINE LYASE by MICHAEL ALAN JOHNSTONE B.S. University of Central Florida, 2017 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2019 Major Professor: William T. Self © 2019 Michael Alan Johnstone ii ABSTRACT Selenium is a vital micronutrient in many organisms. While traces are required for survival, excess amounts are toxic; thus, selenium can be regarded as a biological “double-edged sword”. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood.
    [Show full text]
  • Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals
    antioxidants Review Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals Da-Young Lee, Moon-Young Song and Eun-Hee Kim * College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea; [email protected] (D.-Y.L.); [email protected] (M.-Y.S.) * Correspondence: [email protected]; Tel.: +82-31-881-7179 Abstract: Colorectal cancer still has a high incidence and mortality rate, according to a report from the American Cancer Society. Colorectal cancer has a high prevalence in patients with inflammatory bowel disease. Oxidative stress, including reactive oxygen species (ROS) and lipid peroxidation, has been known to cause inflammatory diseases and malignant disorders. In particular, the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-related protein 1 (KEAP1) pathway is well known to protect cells from oxidative stress and inflammation. Nrf2 was first found in the homolog of the hematopoietic transcription factor p45 NF-E2, and the transcription factor Nrf2 is a member of the Cap ‘N’ Collar family. KEAP1 is well known as a negative regulator that rapidly degrades Nrf2 through the proteasome system. A range of evidence has shown that consumption of phytochemicals has a preventive or inhibitory effect on cancer progression or proliferation, depending on the stage of colorectal cancer. Therefore, the discovery of phytochemicals regulating the Nrf2/KEAP1 axis and Citation: Lee, D.-Y.; Song, M.-Y.; verification of their efficacy have attracted scientific attention. In this review, we summarize the role Kim, E.-H. Role of Oxidative Stress of oxidative stress and the Nrf2/KEAP1 signaling pathway in colorectal cancer, and the possible and Nrf2/KEAP1 Signaling in utility of phytochemicals with respect to the regulation of the Nrf2/KEAP1 axis in colorectal cancer.
    [Show full text]
  • Programmed Cell-Death by Ferroptosis: Antioxidants As Mitigators
    International Journal of Molecular Sciences Review Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators Naroa Kajarabille 1 and Gladys O. Latunde-Dada 2,* 1 Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain; [email protected] 2 King’s College London, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected] Received: 9 September 2019; Accepted: 2 October 2019; Published: 8 October 2019 Abstract: Iron, the fourth most abundant element in the Earth’s crust, is vital in living organisms because of its diverse ligand-binding and electron-transfer properties. This ability of iron in the redox cycle as a ferrous ion enables it to react with H2O2, in the Fenton reaction, to produce a hydroxyl radical ( OH)—one of the reactive oxygen species (ROS) that cause deleterious oxidative damage • to DNA, proteins, and membrane lipids. Ferroptosis is a non-apoptotic regulated cell death that is dependent on iron and reactive oxygen species (ROS) and is characterized by lipid peroxidation. It is triggered when the endogenous antioxidant status of the cell is compromised, leading to lipid ROS accumulation that is toxic and damaging to the membrane structure. Consequently, oxidative stress and the antioxidant levels of the cells are important modulators of lipid peroxidation that induce this novel form of cell death. Remedies capable of averting iron-dependent lipid peroxidation, therefore, are lipophilic antioxidants, including vitamin E, ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1) and possibly potent bioactive polyphenols.
    [Show full text]
  • Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus Faecalis
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis Samantha Nelson University of Central Florida Part of the Biotechnology Commons, and the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Nelson, Samantha, "Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis" (2014). Electronic Theses and Dissertations, 2004-2019. 4807. https://stars.library.ucf.edu/etd/4807 PURIFICATION AND CHARACTERIZATION OF A NOVEL SELENOCYSTEINE LYASE FROM ENTEROCOCCUS FAECALIS by SAMANTHA NELSON B.S. University of Central Florida, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: William T. Self © 2014 Samantha Nelson ii ABSTRACT A previous study identified Enterococcus faecalis as one of two bacteria known to have the selD gene and other selenium related genes without having the genes necessary to make selenocysteine or selenouridine. EF2570, a gene in the cluster, was later shown to be upregulated during biofilm formation and also responsible for a selenite- and molybdate-dependent increase in biofilm formation in vitro.
    [Show full text]
  • Myeloperoxidase-Mediated Platelet Release Reaction
    Myeloperoxidase-Mediated Platelet Release Reaction Robert A. Clark J Clin Invest. 1979;63(2):177-183. https://doi.org/10.1172/JCI109287. Research Article The ability of the neutrophil myeloperoxidase-hydrogen peroxide-halide system to induce the release of human platelet constituents was examined. Both lytic and nonlytic effects on platelets were assessed by comparison of the simultaneously measured release of a dense-granule marker, [3H]serotonin, and a cytoplasmic marker, [14C]adenine. Incubation of platelets with H2O2 alone (20 μM H2O2 for 10 min) resulted in a small, although significant, release of both serotonin and adenine, suggesting some platelet lysis. Substantial release of these markers was observed only with increased H2O2 concentrations (>0.1 mM) or prolonged incubation (1-2 h). Serotonin release by H2O2 was markedly enhanced by the addition of myeloperoxidase and a halide. Under these conditions, there was a predominance of release of serotonin (50%) vs. adenine (13%), suggesting, in part, a nonlytic mechanism. Serotonin release by the complete peroxidase system was rapid, reaching maximal levels in 2-5 min, and was active at H2O2 concentrations as low as 10 μM. It was blocked by agents which inhibit peroxidase (azide, cyanide), 2+ degrade H2O2 (catalase), chelate Mg (EDTA, but not EGTA), or inhibit platelet metabolic activity (dinitrophenol, deoxyglucose). These results suggest that the myeloperoxidase system initiates the release of platelet constituents primarily by a nonlytic process analogous to the platelet release reaction. Because components of the peroxidase system (myeloperoxidase, H2O2) are secreted by activated neutrophils, the reactions described here […] Find the latest version: https://jci.me/109287/pdf Myeloperoxidase-Mediated Platelet Release Reaction ROBERT A.
    [Show full text]
  • GRAS Notice 665, Lactoperoxidase System
    GRAS Notice (GRN) No. 665 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION 000001 Mo•·gan Lewis Gf<N Ob()&h5 [R1~~~~~~[Q) Gary L. Yingling Senior Counsel JUL 1 8 2016 + 1.202. 739 .5610 gary.yingling@morganlewis .com OFFICE OF FOO~ ADDITIVE SAFETY July 15, 2016 VIA FEDERAL EXPRESS Dr. Antonia Mattia Director Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Re: GRAS Notification for the Lactoperoxidase System Dear Dr. Mattia: On behalf of Taradon Laboratory C'Taradon"), we are submitting under cover of this letter three paper copies and one eCopy of DSM's generally recognized as safe ("GRAS'') notification for its lactoperoxidase system (''LPS''). The electronic copy is provided on a virus-free CD, and is an exact copy of the paper submission. Taradon has determined through scientific procedures that its lactoperoxidase system preparation is GRAS for use as a microbial control adjunct to standard dairy processing procedures such as maintaining appropriate temperatures, pasteurization, or other antimicrobial treatments to extend the shelf life of the products. In many parts of the world, the LPS has been used to protect dairy products, particularly in remote areas where farmers are not in close proximity to the market. In the US, the LPS is intended to be used as a processing aid to extend the shelf life of avariety of dairy products, specifically fresh cheese including mozzarella and cottage cheeses, frozen dairy desserts, fermented milk, flavored milk drinks, and yogurt.
    [Show full text]
  • Kinetics of Interconversion of Redox Intermediates of Lactoperoxidase
    Jpn. J. Infect. Dis., 57, 2004 Kinetics of Interconversion of Redox Intermediates of Lactoperoxidase, Eosinophil Peroxidase and Myeloperoxidase Paul Georg Furtmüller, Walter Jantschko, Martina Zederbauer, Christa Jakopitsch, Jürgen Arnhold1 and Christian Obinger* Metalloprotein Research Group, Division of Biochemistry, Department of Chemistry, BOKU-University of Natural Resources and Applied Life Sciences, 1Institute of Medical Physics and Biophysics, School of Medicine, University of Leipzig, Leipzig, Germany SUMMARY: Myeloperoxidase, eosinophil peroxidase and lactoperoxidase are heme-containing oxidoreductases, which undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-) catalases. Today - based on sequence homologies, tertiary structure and the halide ions is the following: I– > Br– > Cl–. All peroxidases can nature of the heme group - two heme peroxidase superfamilies are oxidize iodide. At neutral pH, only MPO is capable to oxidize distinguished, namely the superfamily containing enzymes from chloride at a reasonable rate (4), and it is assumed that chloride and archaea, bacteria, fungi and plants (1) and the superfamily of thiocyanate are competing substrates in vivo. EPO can oxidize mammalian enzymes (2), which contains myeloperoxidase (MPO), chloride only at acidic pH (5), and at normal plasma concentrations, eosinophil peroxidase (EPO), lactoperoxidase (LPO) and thyroid bromide and thiocyanate function as substrates, whereas for LPO peroxidase (TPO).
    [Show full text]
  • Parental Selenium Nutrition Affects the One-Carbon Metabolism
    life Article Parental Selenium Nutrition Affects the One-Carbon Metabolism and the Hepatic DNA Methylation Pattern of Rainbow Trout (Oncorhynchus mykiss) in the Progeny 1, 2, 1 1 Pauline Wischhusen y , Takaya Saito y ,Cécile Heraud , Sadasivam J. Kaushik , 1 2 1, , Benoit Fauconneau , Philip Antony Jesu Prabhu , Stéphanie Fontagné-Dicharry * y 2, and Kaja H. Skjærven y 1 INRAE, University of Pau and Pays de l’Adour, E2S UPPA, NUMEA, 64310 Saint Pee sur Nivelle, France; [email protected] (P.W.); [email protected] (C.H.); [email protected] (S.J.K.); [email protected] (B.F.) 2 Institute of Marine Research, P.O. Box 1870, 5020 Bergen, Norway; [email protected] (T.S.); [email protected] (P.A.J.P.); [email protected] (K.H.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 11 June 2020; Accepted: 23 July 2020; Published: 25 July 2020 Abstract: Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage.
    [Show full text]
  • Positive Granules in Normal Circulating Neutrophils: an Ultrastructural Study by Cryosection
    Histol Histopathol (1998) 13: 405-414 Histology and 001: 10.14670/HH-13.405 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Morphological heterogeneity of myeloperoxidase­ positive granules in normal circulating neutrophils: an ultrastructural study by cryosection N. Saitol, F. Satol, M. Asakal, N. Takemori2 and Y. Kohgo3 1Third Department of Internal Medicine, Hokkaido University School of Medicine, Sapporo, Hokkaido, 2Asahikawa Kohosei General Hospital, Asahikawa, Hokkaido, and 3Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa, Japan Summary. Ultrastructural localization of myelo­ and shape (Ackerman and Clark, 1971). In general, the peroxidase (MPO) in the granules of human circulating ultrastructural localization of MPO has been performed neutrophils was examined by cryosection. On careful employing a cytochemical technique (Graham and comparison with the morphological characteristics of the Karnovksy, 1966). However, using this technique, the granules by conventional transmission electron homogeneous chemical product induced by the microscopic study, large MPO-positive granules were cytochemical reaction makes it difficult to identify divided into five types by immunocryoultramicrotomy intragranular structure. Moreover, it is not easy to using monoclonal antibody. Double staining of MPO and precisely pinpoint which granules observed by lactoferrin (or lysozyme) was also performed. Lacto­ conventional transmission electron microscopy are MPO ferrin was generally detected in MPO-negative granules. positive (MPO+). To overcome these disadvantages, an Lysozyme immunostaining was present in MPO-positive ultrastructural immunogold staining, by which the and -negative granules. These data may suggest different structure can still be observed even after positive functions among large MPO-positive granules of human reaction for detecting intragranular proteins, has been circulating neutrophils.
    [Show full text]