The Drainage Basin System

Total Page:16

File Type:pdf, Size:1020Kb

The Drainage Basin System The Drainage Basin System These icons indicate that teacher’s notes or useful web addresses are available in the Notes Page. This icon indicates that the slide contains activities created in Flash. These activities are not editable. For more detailed instructions, see the Getting Started presentation. 1 of 29 © Boardworks Ltd 2005 What is a drainage basin? How does the drainage basin system operate? What is a flood hydrograph? What factors influence the shape of a flood hydrograph? Learning objectives 2 of 29 © Boardworks Ltd 2005 What is a drainage basin? Tributary Mouth A river which joins a larger river. Where the river flows into the sea, or sometimes a Catchment lake. The area from which water drains Watershed into a particular The boundary drainage basin. dividing one drainage basin from another- a ridge of high Source land. The upland area where the river Confluence begins. The point at which two rivers join. 3 of 29 © Boardworks Ltd 2005 Do you know your drainage basin terminology? 4 of 29 © Boardworks Ltd 2005 Watershed The drainage basin of the Afon Caerfanell, a tributary of the River Usk, South Wales. the watershed can be clearly seen on this photograph 5 of 29 © Boardworks Ltd 2005 The confluence of two rivers 6 of 29 © Boardworks Ltd 2005 Match the label to the correct letter Watershed c Confluence Tributary b Source d a 7 of 29 © Boardworks Ltd 2005 Sketch the river showing its catchment Add the following labels – Watershed, Confluence, Tributary 8 of 29 © Boardworks Ltd 2005 What is a drainage basin? How does the drainage basin system operate? What is a flood hydrograph? What factors influence the shape of a flood hydrograph? Learning objectives 9 of 29 © Boardworks Ltd 2005 How does the drainage basin system operate? A drainage basin system is a part of the world’s hydrological (water) cycle: The hydrological cycle is a closed system. The drainage basin is an open system. You should be able to explain why once you have seen the following slides! 10 of 29 © Boardworks Ltd 2005 The water cycle – more detailed 11 of 29 © Boardworks Ltd 2005 The water cycle – definitions! 12 of 29 © Boardworks Ltd 2005 The drainage basin 13 of 29 © Boardworks Ltd 2005 Drainage basin system precipitation interception evapotranspiration infiltration percolation river water table 14 of 29 © Boardworks Ltd 2005 Drainage basin system inputs stores and flows outputs precipitation interception river runoff surface water storage evaporation surface runoff transpiration infiltration soil water storage throughflow percolation groundwater storage groundwater flow 15 of 29 © Boardworks Ltd 2005 Drainage basin terms 16 of 29 © Boardworks Ltd 2005 Drainage basin system 17 of 29 © Boardworks Ltd 2005 What is a drainage basin? How does the drainage basin system operate? What is a flood hydrograph? What factors influence the shape of a flood hydrograph? Learning objectives 18 of 29 © Boardworks Ltd 2005 What is a flood hydrograph? 19 of 29 © Boardworks Ltd 2005 Hydrographs Peak discharge Falling Rising limb limb storm flow normal (base) flow I = Lagtime Peak rainfall Write a definition of lagtime. Calculate the lagtime shown on this hydrograph. 20 of 29 © Boardworks Ltd 2005 What is a drainage basin? How does the drainage basin system operate? What is a flood hydrograph? What factors influence the shape of a flood hydrograph? Learning objectives 21 of 29 © Boardworks Ltd 2005 Hydrographs Geology and soil Gradient of the valley sides What affects the shape of a hydrograph? Land use Drainage density Type and amount of precipitation 22 of 29 © Boardworks Ltd 2005 How do trees reduce flooding? trees intercept the rain evapotranspiration reduces the amount of water that reaches the river water is taken through the roots and so less enters the river 23 of 29 © Boardworks Ltd 2005 What factors influence the shape of a hydrograph? The hydrographs ‘a’ and ‘b’ have been produced from the same storm event but from different drainage basins. 24 of 29 © Boardworks Ltd 2005 Hydrographs Imagine that these two areas have had the same amount of rain over a 24-hour period. Draw a possible hydrograph for each of these areas. A B 25 of 29 © Boardworks Ltd 2005 Hydrographs What could cause 2 peaks in a hydrograph? 26 of 29 © Boardworks Ltd 2005 Hydrographs Compare these two hydrographs. Which one has the largest lag time? Explain your answer. 27 of 29 © Boardworks Ltd 2005 What do you know about drainage basins? 28 of 29 © Boardworks Ltd 2005 Key ideas A drainage basin is an area of land drained by a main river and its tributaries. The hydrological (water) cycle is the global circulation of water. It is a closed system. A drainage basin system is one part of the hydrological cycle. It is an open system as it has inputs and outputs. A flood hydrograph shows how a river’s discharge changes in response to a rainfall event. The shape of a flood hydrograph is influenced by a range of physical and human factors. 29 of 29 © Boardworks Ltd 2005.
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Calvin Park Tributary Stream Restoration -- Survey Phase
    Neighborhood Advisory Croydon Creek – Calvin Park Tributary Stream Restoration -- Survey Phase Project Rockville’s Department of Public Works has begun the design of the Croydon Creek – Description: Calvin Park Tributary Stream Restoration project. The city’s consultant, AECOM, will survey the area within Rockville Civic Center Park in the project limits depicted on the back side of this advisory. The survey will identify features including the existing roads, stream, trees, utilities, and topography. Survey work will begin in March and will continue into the spring. Surveyors and engineers with equipment will traverse the area shown on the back of this advisory. Survey stakes may be placed in the ground and trees may be marked with temporary metal tags to assist in identification and inventory. The survey flags do not indicate tree removal. Purpose: The Croydon Creek – Calvin Park Tributary Stream Restoration project was recommended in the 2013 Rock Creek Watershed Assessment as a crucial component to the long-term health of the watershed. The assessment was approved by the Mayor and Council in February 2013, and this project was included in the adopted Fiscal Year 2017 Capital Improvements Program. The project goals are to enhance the watershed through stream restoration, wetland enhancement, reforestation, and the protection of private and public property and infrastructure Location: Croydon Creek within Rockville Civic Center Park and the Calvin Park Tributary from Baltimore Road to Croydon Creek (See the map on the back of this advisory). Timeline: Survey work and preliminary design is anticipated to begin in March and continue through spring. A community meeting will be held this summer to provide additional details of the project.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • The Arkansas River Flood of June 3-5, 1921
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE 0ns SMITH, Director Water-Supply Paper 4$7 THE ARKANSAS RIVER FLOOD OF JUNE 3-5, 1921 BY ROBERT FOLLANS^EE AND EDWARD E. JON^S WASHINGTON GOVERNMENT PRINTING OFFICE 1922 i> CONTENTS. .Page. Introduction________________ ___ 5 Acknowledgments ___ __________ 6 Summary of flood losses-__________ _ 6 Progress of flood crest through Arkansas Valley _____________ 8 Topography of Arkansas basin_______________ _________ 9 Cause of flood______________1___________ ______ 11 Principal areas of intense rainfall____ ___ _ 15 Effect of reservoirs on the flood__________________________ 16 Flood flows_______________________________________ 19 Method of determination________________ ______ _ 19 The flood between Canon City and Pueblo_________________ 23 The flood at Pueblo________________________________ 23 General features_____________________________ 23 Arrival of tributary flood crests _______________ 25 Maximum discharge__________________________ 26 Total discharge_____________________________ 27 The flood below Pueblo_____________________________ 30 General features _________ _______________ 30 Tributary streams_____________________________ 31 Fountain Creek____________________________ 31 St. Charles River___________________________ 33 Chico Creek_______________________________ 34 Previous floods i____________________________________ 35 Flood of Indian legend_____________________________ 35 Floods of authentic record__________________________ 36 Maximum discharges
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • South Fox Meadow Drainage Improvement Project
    VILLAGE OF SCARSDALE WESTCHESTER COUNTY, NEW YORK COMPREHENSIVE STORM WATER MANAGEMENT SOUTH FOX MEADOW STORMWATER IMPROVEMENT PROJECT In association with WESTCHESTER COUNTY FLOOD MITIGATION PROGRAM Rob DeGiorgio, P.E., CPESC, CPSWQ The Bronx River Watershed Fox Meadow Brook Bronx River Watershed Area in Westchester 48.3 square miles (30,932 acres) 15 Sub-watersheds Percent of undeveloped land in the Watershed 3.3% (0.8 acres in Fox Meadow Brook (FMB) FMB watershed) 928 acres (5.7% of watershed) Bronx River Watershed Fox Meadow Brook George Field Park High School Duck Pond Project Philosophy and Goals •Provide flood mitigation within the Fox Meadow Brook Drainage Basin. •Reduce peak run off rates in the Bronx River Watershed through dry detention storage. •Rehabilitate and preserve natural landscapes and wetlands through invasive species management and re- construction. •Improve water quality. • Petition for and obtain County grant funding to subsidize the project. Village of Scarsdale Fox Meadow Brook Watershed SR-2 BR-4 SR-3 BR-7 BR-8 SR-5 Village of Scarsdale History •In 2009 the Village completed a Comprehensive Storm Water Management Plan. •Critical Bronx River sub drainage basin areas identified inclusive of Fox Meadow Brook (BR-4, BR-7, BR-8). •26 Capital Improvement Projects were identified, several of which comprise the Fox Meadow Detention Improvement Project. •Project included in Village’s Capital Budget. •Project has been reviewed by the NYS DEC. •NYS EFC has approved financing for the project granting Scarsdale a 50% subsidy for their local share of the costs. Village of Scarsdale Site Locations – 7 Segments 7 Project Segments 1.
    [Show full text]
  • Amazon River Voyage
    AMAZON RIVER VOYAGE Over the 38 years that International Expeditions has been leading Amazon River cruises, our guests have enjoyed unrivaled access to the Peruvian rainforest’s most pristine areas and the company of the river’s most knowledgeable guides. Your exciting daily excursions include birding at dawn, school visits in local villages and even piranha fishing! Join IE and be transported to the Amazon of your imagination to discover a rainforest that pulsates with an unrivaled diversity of wildlife. Authentic Amazon River Experience Aboard this luxury Amazon River cruise, you’ll create a lifetime of memories: the joy in the eyes of a village child when you visit their school; the enveloping darkness of the jungle; or the awe possible. of floating along narrow streams accompanied by pink dolphins. Drawing on insight from our native Amazon travel guides, Explore with Pioneers in Amazon Travel International Expeditions intentionally varies the villages and International Expeditions pioneered travel to the Peruvian tributaries we visit, ensuring you get the most authentic Amazon, and our nature-focused, small-group expedition travel rainforest tour experience remains the standard for Amazon Voyage expedition cruises. IE not only pioneered travel to this region, we still work with many of the naturalist guides that we helped to train. Ensuring a worry-free and educational journey, these expert local naturalist guides — along with an expedition leader — accompany our Amazon Voyage cruises. Each day, these knowledgeable Amazon River travel guides use their decades of learning and guiding experience to serve as lecturers, field guides and friends as you explore the rainforest.
    [Show full text]
  • Colorado River Compact, 1922
    Colorado River Compact, 1922 The States of Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming, having resolved to enter into a compact under the Act of the Congress of the United States of America approved August 19, 1921 (42 Statutes at Large, page 171), and the Acts of the Legislatures of the said States, have through their Governors appointed as their Commissioners: W.S. Norviel for the State of Arizona, W.F. McClure for the State of California, Delph E. Carpenter for the State of Colorado, J.G. Scrugham for the State of Nevada, Stephen B. Davis, Jr., for the State of New Mexico, R.E. Caldwell for the State of Utah, Frank C. Emerson for the State of Wyoming, who, after negotiations participated in by Herbert Hoover appointed by The President as the representative of the United States of America, have agreed upon the following articles: ARTICLE I The major purposes of this compact are to provide for the equitable division and apportionment of the use of the waters of the Colorado River System; to establish the relative importance of different beneficial uses of water, to promote interstate comity; to remove causes of present and future controversies; and to secure the expeditious agricultural and industrial development of the Colorado River Basin, the storage of its waters, and the protection of life and property from floods. To these ends the Colorado River Basin is divided into two Basins, and an apportionment of the use of part of the water of the Colorado River System is made to each of them with the provision that further equitable apportionments may be made.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Topic: Drainage Basins As Open Systems 3.1.1.2 Runoff, Hydrographs & Changes in the Water Cycle Over Time
    Topic: Drainage basins as open systems 3.1.1.2 Runoff, hydrographs & changes in the water cycle over time What you need to know How runoff varies within the water cycle. How to analyse a flood hydrograph How the water cycle changes over time Introduction: Runoff (the flow of water over the Earth’s surface) can vary depending upon a range of physical and human factors. These include: • Time of year. • Storm conditions. • Vegetation cover. • Soil saturation levels. • Topography & relief. • Agricultural land use. • Urban land use. Physical factors affecting runoff: Time of year In temperate climates, where seasonal change is evident, runoff levels can vary greatly throughout the year. In summer, runoff levels can be low due to a reduction in rainfall. Soil saturation levels will be low and therefore any rainfall at this point can easily infiltrate into the ground. However, intense baking of the soil by the sun can lead to the soil becoming effectively impermeable and summer storms can lead to high levels of runoff as the rain is unable to soak in. This can lead to flash flooSAMPLEds. In winter, precipitation may be in the form of snow and the water may be stored on the ground due to low temperatures. Warmer temperatures in spring may lead to snowmelt and this can lead to the soil reaching field capacity quickly. Further meltwater will therefore run over the surface. © Tutor2u Limited 2016 www.tutor2u.net Topic: Drainage basins as open systems 3.1.1.2 Runoff, hydrographs & changes in the water cycle over time Storm conditions Intense storms with heavy rainfall can lead to soils quickly becoming saturated.
    [Show full text]
  • The Cedar River
    Since the 1800’s, Iowa rivers have been designated as CEDARCEDAR either meandered or non- RIVERRIVER meandered. Much of the Cedar River Water Trail is lined with public lands and classified as meandered, meaning that BLACK HAWK COUNTY paddlers may access not only BLACK HAWK the river itself but also the COUNTY river bottom and banks along its course. However, north of Washington Park, the river is classified as non-meandered, meaning that the river bed and surrounding land are owned by the adjacent landowners and paddlers should respect their property rights. BLACK HAWK COUNTY THE CEDAR RIVER - WILDNESS AND CIVILIZATION The Cedar River Water Trail offers a unique paddling experience amongst Iowa’s designated water trails. A journey down the 47 miles of the trail features dramatically contrasting settings, with the wildness of forested bottomlands rich with diverse plant, wildlife, and bird species giving way to historic urban environments. Paddlers are offered an opportunity to explore the downtowns of two major Iowa cities before returning again to the river’s pastoral setting. Traversing the county’s widest stream, its landscape, and lore may feel like time travel at times. From prehistoric times into the present, the Silver maples shade a peaceful backwater of the Cedar River Cedar River valley continues to beckon These trees, typical of bottomland hardwood forest, often grow right up to the water’s to paddlers to explore its natural beauty edge. Quiet back channels are “nurseries” for aquatic wildlife and isolated nesting areas for and cultural treasures. birds and wildlife. Red-spotted purple butterfly Bank swallow nest holes Cedar waxwing gathering nest material CEDAR RIVER WATER TRAIL The Cedar River bisects Black Hawk County diagonally as it continues to erode the landform region called the Iowan Surface.
    [Show full text]