Distribution Ray Tracing Academic Press, 1989

Total Page:16

File Type:pdf, Size:1020Kb

Distribution Ray Tracing Academic Press, 1989 Reading Required: Shirley, 13.11, 14.1-14.3 Further reading: A. Glassner. An Introduction to Ray Tracing. Distribution Ray Tracing Academic Press, 1989. [In the lab.] Robert L. Cook, Thomas Porter, Loren Carpenter. “Distributed Ray Tracing.” Computer Graphics Brian Curless (Proceedings of SIGGRAPH 84). 18 (3). pp. 137- CSE 557 145. 1984. Fall 2014 James T. Kajiya. “The Rendering Equation.” Computer Graphics (Proceedings of SIGGRAPH 86). 20 (4). pp. 143-150. 1986. 1 2 Pixel anti-aliasing BRDF The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions: ns LV I=ILB kds()NL +k N LV ILr f (,LV ) The mapping function fr is often written in terms of No anti-aliasing incoming (light) directions in and outgoing (viewing) directions out: ffrr(,inout) or ( in out ) This function is called the Bi-directional Reflectance Distribution Function (BRDF). Here’s a plot with in held constant: fr (,in out ) in Pixel anti-aliasing All of this assumes that inter-reflection behaves in a mirror-like fashion… BRDF’s can be quite sophisticated… 3 4 Light reflection with BRDFs Simulating gloss and translucency BRDF’s exhibit Helmholtz reciprocity: The mirror-like form of reflection, when used to ff(( )) rrinout out in approximate glossy surfaces, introduces a kind of That means we can take two equivalent views of aliasing, because we are under-sampling reflection (and refraction). reflection. Suppose in = L and out = V: For example: fr (L V) fr (V L) L V We can now think of the BRDF as weighting light Distributing rays over reflection directions gives: coming in from all directions, which can be added up: IIf()VLLLNL ()(r V) d H Or, written more generally: IIf()()( N out inr in out ) ind in H 5 6 Reflection anti-aliasing Pixel and reflection anti-aliasing Reflection anti-aliasing Pixel and reflection anti-aliasing 7 8 Full anti-aliasing Approximating integrals Let’s say we want to compute the integral of a function: Ffxdx () If f(x) is not known analytically (or is not easy to integrate), but can be readily evaluated, then we can approximate the integral by sampling. Our approximate integral value is then something like: Full anti-aliasing…lots of nested integrals! n Ffixx () Computing these integrals is prohibitively expensive, i1 especially after following the rays recursively. where we have sampled n times at spacing x. We’ll look at ways to approximate high-dimensional Evaluating an integral in this manner is called integrals… quadrature. Q: What happens if we have integrals over d dimensions, sampling n times in each dimension? 9 10 A stochastic approach Approximating integrals (cont’d) A good approach to distributing samples unevenly across many dimensions is to do so stochastically. We can also do uneven sampling: Quick review first… For 1D, let’s say the position in x is a random variable X, which is distributed according to p(x), a probability density function (non-negative, integrates to unity). Then: E[X] V[X] E[kX] = Our approximate integral value is then something like: V[kX] = n Ffxx ()ii E[g(X)] = i1 where we have sampled n times at variable spacing xi. V[g(X)] = We can think of the xi as weights on the samples. We can also show that for independent random variables X and Y: Q: When the xi are more closely spaced, do they get larger or smaller weight? E[X + Y] = Q: Which xi should we pick? V[X + Y] = 11 12 Monte Carlo integration Monte Carlo integration (cont’d) Instead, we can estimate the expected value of Consider this function of a random variable: f(X)/p(X) (and thus the integral F) as: fX() n 1()fXi p()X F npXi1 ()i where f(x) is the function we’d like to integrate. What where the X are independent and identically is its expected value? i distributed (i.i.d.) random variables, each with distribution p(x). This procedure is known as Monte Carlo integration. Note that F is a random variable built by summing over functions of random variables f(Xi )/p(Xi ), where each of these functions of a random variable is itself a random variable. What is its expected value of F ? Computing this expected value requires the analytic n integral F, which is not available. 1()fXi E[F ] E npXi1 ()i 13 14 Monte Carlo integration (cont’d) Uniform sampling OK, so now we can say that F is a random variable with expected value equal to F. Suppose that the unknown function we are integrating happens to be a normalized box function What is the variance of this random variable? of width a: 1/axa / 2 n fx() 1()fXi V[F ] V 0otherwise npXi1 ()i Suppose we now try to estimate the integral of f(x) with uniform sampling over an interval of width w (i.e., choosing X from a uniform distribution): 1/wxw / 2 px() 0otherwise where w a. If we can get the variance to 0, then F must be a single value which must be equal to F. Getting to 0 is hard, but getting to low variance is an important goal. What variables and/or functions are under our control here? 15 16 Importance sampling Stratified sampling A better approach, if f(x) is non-negative, would be to An improvement on importance sampling is stratified choose p(x) ~ f(x). In fact, this choice would be sampling. optimal. The idea is that, given your probability function: You can break it up into bins of equal probability area (i.e., equal likelihood). Then choose a sample from each bin. Why don’t we just do that? Alternatively, we can use heuristics to guess where f(x) will be large and choose p(x) based on those heuristics. This approach is called importance sampling. 17 18 Summing over ray paths Summing over ray paths We can think of this problem in terms of enumerated rays: We can incorporate tertiary rays next: 1 The intensity at a pixel is the sum over the primary IIrfrrfrrpixel ()( ijk r ijk ij )( r ij i ) n ijk rays: n 1 Each triple i,j,k corresponds to a ray path: IIrpixel () i n i For a given primary ray, its intensity depends on rrrijk ij i secondary rays: So, we can see that ray tracing is a way to approximate a Ir() Ir ( )( f r r ) iijriji complex, nested light transport integral with a summation j over ray paths (of arbitrary length!). Substituting back in: Problem: too expensive to sum over all paths. 1 IIrfrrpixel ()( ij r ij i ) Solution: choose a small number of “good” paths. n ij 19 20 Glossy reflection revisited Whitted ray tracing Let’s return to the glossy reflection model, and modify Returning to the reflection example, Whitted ray it – for purposes of illustration – as follows: tracing replaces the glossy reflection with mirror reflection: We can visualize the span of rays we want to integrate over, within a pixel: Thus, we render with anti-aliasing as follows: 21 22 Monte Carlo path tracing Importance sampling Let’ return to our original (simplified) glossy reflection The problem is that lots of samples are “wasted.” model: Using again our glossy reflection model: An alternative way to follow rays is by making random decisions along the way – a.k.a., Monte Carlo path tracing. If we distribute rays uniformly over pixels and Let’s now randomly choose rays, but according to a reflection directions, we get: probability that favors more important reflection directions, i.e., use importance sampling: 23 24 Stratified sampling Stratified sampling of a 2D pixel We still have a problem that rays may be clumped Here we see pure uniform vs. stratified sampling over a together. We can improve on this by splitting 2D pixel (here 16 rays/pixel): reflection into zones: Now let’s restrict our randomness to within these Random Stratified zones, i.e. use stratified sampling: The stratified pattern on the right is also sometimes called a jittered sampling pattern. One interesting side effect of these stochastic sampling patterns is that they actually injects noise into the solution (slightly grainier images). This noise tends to be less objectionable than aliasing artifacts. 25 26 Distribution ray tracing DRT pseudocode These ideas can be combined to give a particular TraceImage() looks basically the same, except now method called distribution ray tracing [Cook84]: each pixel records the average color of jittered sub- pixel rays. uses non-uniform (jittered) samples. replaces aliasing artifacts with noise. function traceImage (scene): provides additional effects by distributing rays to for each pixel (i, j) in image do sample: I(i, j) 0 • Reflections and refractions for each sub-pixel id in (i,j) do •Light source area s pixelToWorld(jitter(i, j, id)) • Camera lens area •Time p COP d (s - p).normalize() I(i, j) I(i, j) + traceRay(scene, p, d, id) [This approach was originally called “distributed ray end for tracing,” but we will call it distribution ray tracing (as I(i, j) I(i, j)/numSubPixels in probability distributions) so as not to confuse it with a parallel computing approach.] end for end function A typical choice is numSubPixels = 5*5. 27 28 DRT pseudocode (cont’d) Pre-sampling glossy reflections (Quasi-Monte Carlo) Now consider traceRay(), modified to handle (only) opaque glossy surfaces: function traceRay(scene, p, d, id): (q, N, material) intersect (scene, p, d) I shade(…) R jitteredReflectDirection(N, -d, material, id) I I + material.kr traceRay(scene, q, R, id) return I end function 29 30 Soft shadows The pinhole camera The first camera - “camera obscura” - known to Aristotle.
Recommended publications
  • Distribution Ray Tracing Academic Press, 1989
    Reading Required: ® Shirley, 13.11, 14.1-14.3 Further reading: ® A. Glassner. An Introduction to Ray Tracing. Distribution Ray Tracing Academic Press, 1989. [In the lab.] ® Robert L. Cook, Thomas Porter, Loren Carpenter. “Distributed Ray Tracing.” Computer Graphics Brian Curless (Proceedings of SIGGRAPH 84). 18 (3) . pp. 137- CSE 557 145. 1984. Fall 2013 ® James T. Kajiya. “The Rendering Equation.” Computer Graphics (Proceedings of SIGGRAPH 86). 20 (4) . pp. 143-150. 1986. 1 2 Pixel anti-aliasing BRDF The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions: ns L+ V I=I B k(N⋅ L ) +k N ⋅ L d s L+ V + = IL f r (,L V ) The mapping function fr is often written in terms of ω No anti-aliasing incoming (light) directions in and outgoing (viewing) ω directions out : ωω ωω→ fr(in ,out) or f r ( in out ) This function is called the Bi-directional Reflectance Distribution Function (BRDF ). ω Here’s a plot with in held constant: f (ω , ω ) ω r in out in Pixel anti-aliasing All of this assumes that inter-reflection behaves in a mirror-like fashion… BRDF’s can be quite sophisticated… 3 4 Light reflection with BRDFs Simulating gloss and translucency BRDF’s exhibit Helmholtz reciprocity: The mirror-like form of reflection, when used to f(ωω→)= f ( ω → ω ) rinout r out in approximate glossy surfaces, introduces a kind of That means we can take two equivalent views of aliasing, because we are under-sampling reflection ω ω (and refraction).
    [Show full text]
  • An Advanced Path Tracing Architecture for Movie Rendering
    RenderMan: An Advanced Path Tracing Architecture for Movie Rendering PER CHRISTENSEN, JULIAN FONG, JONATHAN SHADE, WAYNE WOOTEN, BRENDEN SCHUBERT, ANDREW KENSLER, STEPHEN FRIEDMAN, CHARLIE KILPATRICK, CLIFF RAMSHAW, MARC BAN- NISTER, BRENTON RAYNER, JONATHAN BROUILLAT, and MAX LIANI, Pixar Animation Studios Fig. 1. Path-traced images rendered with RenderMan: Dory and Hank from Finding Dory (© 2016 Disney•Pixar). McQueen’s crash in Cars 3 (© 2017 Disney•Pixar). Shere Khan from Disney’s The Jungle Book (© 2016 Disney). A destroyer and the Death Star from Lucasfilm’s Rogue One: A Star Wars Story (© & ™ 2016 Lucasfilm Ltd. All rights reserved. Used under authorization.) Pixar’s RenderMan renderer is used to render all of Pixar’s films, and by many 1 INTRODUCTION film studios to render visual effects for live-action movies. RenderMan started Pixar’s movies and short films are all rendered with RenderMan. as a scanline renderer based on the Reyes algorithm, and was extended over The first computer-generated (CG) animated feature film, Toy Story, the years with ray tracing and several global illumination algorithms. was rendered with an early version of RenderMan in 1995. The most This paper describes the modern version of RenderMan, a new architec- ture for an extensible and programmable path tracer with many features recent Pixar movies – Finding Dory, Cars 3, and Coco – were rendered that are essential to handle the fiercely complex scenes in movie production. using RenderMan’s modern path tracing architecture. The two left Users can write their own materials using a bxdf interface, and their own images in Figure 1 show high-quality rendering of two challenging light transport algorithms using an integrator interface – or they can use the CG movie scenes with many bounces of specular reflections and materials and light transport algorithms provided with RenderMan.
    [Show full text]
  • Production Global Illumination
    CIS 497 Senior Capstone Design Project Project Proposal Specification Instructors: Norman I. Badler and Aline Normoyle Production Global Illumination Yining Karl Li Advisor: Norman Badler and Aline Normoyle University of Pennsylvania ABSTRACT For my project, I propose building a production quality global illumination renderer supporting a variety of com- plex features. Such features may include some or all of the following: texturing, subsurface scattering, displacement mapping, deformational motion blur, memory instancing, diffraction, atmospheric scattering, sun&sky, and more. In order to build this renderer, I propose beginning with my existing massively parallel CUDA-based pathtracing core and then exploring methods to accelerate pathtracing, such as GPU-based stackless KD-tree construction, and multiple importance sampling. I also propose investigating and possible implementing alternate GI algorithms that can build on top of pathtracing, such as progressive photon mapping and multiresolution radiosity caching. The final goal of this project is to finish with a renderer capable of rendering out highly complex scenes and anima- tions from programs such as Maya, with high quality global illumination, in a timespan measuring in minutes ra- ther than hours. Project Blog: http://yiningkarlli.blogspot.com While competing with powerhouse commercial renderers 1. INTRODUCTION like Arnold, Renderman, and Vray is beyond the scope of this project, hopefully the end result will still be feature- Global illumination, or GI, is one of the oldest rendering rich and fast enough for use as a production academic ren- problems in computer graphics. In the past two decades, a derer suitable for usecases similar to those of Cornell's variety of both biased and unbaised solutions to the GI Mitsuba render, or PBRT.
    [Show full text]
  • Interactive Distributed Ray Tracing of Highly Complex Models Ingo Wald, Philipp Slusallek, Carsten Benthin Computer Graphics Group
    Interactive Distributed Ray Tracing of Highly Complex Models Ingo Wald, Philipp Slusallek, Carsten Benthin Computer Graphics Group, Saarland University, Saarbruecken, Germany g fwald,slusallek,benthin @graphics.cs.uni-sb.de Abstract. Many disciplines must handle the creation, visualization, and manip- ulation of huge and complex 3D environments. Examples include large structural and mechanical engineering projects dealing with entire cars, ships, buildings, and processing plants. The complexity of such models is usually far beyond the interactive rendering capabilities of todays 3D graphics hardware. Previous ap- proaches relied on costly preprocessing for reducing the number of polygons that need to be rendered per frame but suffered from excessive precomputation times — often several days or even weeks. In this paper we show that using a highly optimized software ray tracer we are able to achieve interactive rendering performance for models up to 50 million triangles including reflection and shadow computations. The necessary prepro- cessing has been greatly simplified and accelerated by more than two orders of magnitude. Interactivity is achieved with a novel approach to distributed render- ing based on coherent ray tracing. A single copy of the scene database is used together with caching of BSP voxels in the ray tracing clients. 1 Introduction The performance of todays graphics hardware has been increased dramati- cally over the last few years. Today many graphics applications can achieve interactive rendering performance even on standard PCs. However, there are also many applications that must handle the creation, visualization, and manipulation of huge and complex 3D environments often containing several tens of millions of polygons [1, 9].
    [Show full text]
  • Monte Carlo Path Tracing
    Chapter 1 Monte Carlo Path Tracing This Chapter discusses Monte Carlo Path Tracing. Many of these ideas appeared in James Kajiya’s original paper on the Rendering Equation. Other good original sources for this material is L. Carter and E. Cashwell’s book Particle-Transport Simulation with the Monte Carlo Methods and J. Spanier and E. Gelbard’s book Monte Carlo Principles and Neutron Transport Problems. 1.1 Solving the Rendering Equation To derive the rendering equation, we begin with the Reflection Equation Lr(~x;~!r) = Z fr(~x;~!i ~!r) Li(~x;~!i) cos θid!i: Ωi ! The reflected radiance Lr is computed by integrating the incoming radiance over a hemisphere centered at a point of the surface and oriented such that its north pole is aligned with the surface normal. The BRDF fr is a probability distribution function that describes the probability that an incoming ray of light is scattered in a random outgoing direction. By convention, the two direction vectors in the BRDF point outward from the surface. One of the basic laws of geometric optics is that radiance does not change as light propagates (assuming there is no scattering or absorption). In free space, where light travels along straight lines, radiance does not change along a ray. Thus, assuming that a point ~x on a receiving surface sees a point ~x0 on a source surface, the incoming radiance is equal to the outgoing radiance: Li(~x;~!i(~x0; ~x)) = Lo(~x0; ~!o0 (~x;~x)): 1 Li(x,ωi) Lr(x,ωr) fr(x,ωi,ωr) Figure 1.1: Integrating over the upper hemisphere.
    [Show full text]
  • High Quality Rendering Using Ray Tracing and Photon Mapping
    High Quality Rendering using Ray Tracing and Photon Mapping Siggraph 2007 Course 8 Monday, August 5, 2007 Lecturers Henrik Wann Jensen University of California, San Diego and Per Christensen Pixar Animation Studios Abstract Ray tracing and photon mapping provide a practical way of efficiently simulating global illumination including interreflections, caustics, color bleeding, participating media and subsurface scattering in scenes with complicated geometry and advanced material models. This halfday course will provide the insight necessary to efficiently implement and use ray tracing and photon mapping to simulate global illumination in complex scenes. The presentation will cover the fun- damentals of ray tracing and photon mapping including efficient tech- niques and data-structures for managing large numbers of rays and photons. In addition, we will describe how to integrate the informa- tion from the photon maps in shading algorithms to render global illu- mination effects such as caustics, color bleeding, participating media, subsurface scattering, and motion blur. Finally, we will describe re- cent advances for dealing with highly complex movie scenes as well as recent work on realtime ray tracing and photon mapping. About the Lecturers Per H. Christensen Pixar Animation Studios [email protected] Per Christensen is a senior software developer in Pixar’s RenderMan group. His main research interest is efficient ray tracing and global illumination in very com- plex scenes. He received an M.Sc. degree in electrical engineering from the Tech- nical University of Denmark and a Ph.D. in computer science from the University of Washington in Seattle. His movie credits include ”Final Fantasy”, ”Finding Nemo”, ”The Incredibles”, and ”Cars”.
    [Show full text]
  • State of the Art in Monte Carlo Ray Tracing for Realistic Image Synthesis
    State of the Art in Monte Carlo Ray Tracing for Realistic Image Synthesis Siggraph 2001 Course 29 Monday, August 13, 2001 Organizer Henrik Wann Jensen Stanford University Lecturers James Arvo Caltech Marcos Fajardo ICT/USC Pat Hanrahan Stanford University Henrik Wann Jensen Stanford University Don Mitchell Matt Pharr Exluna Peter Shirley University of Utah Abstract This full day course will provide a detailed overview of state of the art in Monte Carlo ray tracing. Recent advances in algorithms and available compute power have made Monte Carlo ray tracing based methods widely used for simulating global illumination. This course will review the fundamentals of Monte Carlo methods, and provide a detailed description of the theory behind the latest tech- niques and algorithms used in realistic image synthesis. This includes path tracing, bidirectional path tracing, Metropolis light transport, scattering equations, irradi- ance caching and photon mapping. Lecturers Jim Arvo Computer Science 256-80 1200 E. California Blvd. California Institute of Technology Pasadena, CA91125 Phone: 626 395 6780 Fax: 626 792 4257 [email protected] http://www.cs.caltech.edu/ arvo James Arvo has been an Associate Professor of Computer Science at Caltech since 1995. From 1990 to 1995 he was a senior researcher in the Program of Computer Graphics at Cornell University. He received a B.S. in Mathematics from Michigan Technological University, an M.S. in Mathematics from Michigan State Univer- sity, and a Ph.D. in Computer Science from Yale University in 1995. His research interests include physically-based image synthesis, Monte Carlo methods, human- computer interaction, and symbolic computation.
    [Show full text]
  • High Quality Rendering Using Ray Tracing and Photon Mapping
    High Quality Rendering using Ray Tracing and Photon Mapping Siggraph 2007 Course 8 Monday, August 5, 2007 Lecturers Henrik Wann Jensen University of California, San Diego and Per Christensen Pixar Animation Studios Abstract Ray tracing and photon mapping provide a practical way of efficiently simulating global illumination including interreflections, caustics, color bleeding, participating media and subsurface scattering in scenes with complicated geometry and advanced material models. This halfday course will provide the insight necessary to efficiently implement and use ray tracing and photon mapping to simulate global illumination in complex scenes. The presentation will cover the fun- damentals of ray tracing and photon mapping including efficient tech- niques and data-structures for managing large numbers of rays and photons. In addition, we will describe how to integrate the informa- tion from the photon maps in shading algorithms to render global illu- mination effects such as caustics, color bleeding, participating media, subsurface scattering, and motion blur. Finally, we will describe re- cent advances for dealing with highly complex movie scenes as well as recent work on realtime ray tracing and photon mapping. About the Lecturers Per H. Christensen Pixar Animation Studios [email protected] Per Christensen is a senior software developer in Pixar’s RenderMan group. His main research interest is efficient ray tracing and global illumination in very com- plex scenes. He received an M.Sc. degree in electrical engineering from the Tech- nical University of Denmark and a Ph.D. in computer science from the University of Washington in Seattle. His movie credits include ”Final Fantasy”, ”Finding Nemo”, ”The Incredibles”, and ”Cars”.
    [Show full text]
  • Sorted Deferred Shading for Production Path Tracing
    Eurographics Symposium on Rendering 2013 Volume 32 (2013), Number 4 Nicolas Holzschuch and Szymon Rusinkiewicz (Guest Editors) Sorted Deferred Shading for Production Path Tracing Christian Eisenacher Gregory Nichols Andrew Selle Brent Burley Walt Disney Animation Studios Abstract Ray-traced global illumination (GI) is becoming widespread in production rendering but incoherent secondary ray traversal limits practical rendering to scenes that fit in memory. Incoherent shading also leads to intractable performance with production-scale textures forcing renderers to resort to caching of irradiance, radiosity, and other values to amortize expensive shading. Unfortunately, such caching strategies complicate artist workflow, are difficult to parallelize effectively, and contend for precious memory. Worse, these caches involve approximations that compromise quality. In this paper, we introduce a novel path-tracing framework that avoids these tradeoffs. We sort large, potentially out-of-core ray batches to ensure coherence of ray traversal. We then defer shading of ray hits until we have sorted them, achieving perfectly coherent shading and avoiding the need for shading caches. Categories and Subject Descriptors (according to ACM NUMA effects and load-balancing. Thus, it is desirable to CCS): I.3.7 [Computer Graphics]: Three-Dimensional avoid caches and instead seek to ensure coherent shading. Graphics and Realism—Raytracing In this paper, we present a streaming ray-tracer, capable of performing multi-bounce GI on production-scale scenes 1. Introduction without resorting to shading caches or instancing. To achieve Path-traced GI promises many benefits for production ren- this, we introduce a novel two-stage ray sorting framework. dering: it can produce richer, more plausible results with far First, we sort large, potentially out-of-core ray batches to fewer lights, and avoids the data-management burden asso- ensure coherence.
    [Show full text]
  • Stochastic Ray Tracing Contents Classical Ray Tracing with Area Light Sources
    Contents Stochastic Ray Tracing • Monte Carlo Integration • Application to direct lighting by area light sources • Solving the radiance equation with the Kadi Bouatouch Monte Carlo Method IRISA – Distributed Ray Tracing Email: [email protected] – Path Traycing 1 2 Classical Ray Tracing With Area Light Sources • One shadow ray by intersection point • Only point light sources • Hard shadows: umbra • Soft shadows • Area light sources != point light sources 3 4 More Sample Points on the Light Solution to the Rendering Equation Source y ψ y • Analytical solution: too ψθy V(x,y)=? θy much difficult V(x,y)=?rxy rxy θx • Use the Monte Carlo θ x x Θx method Θ cosθxcosθy e L(x→Θ)= fr (x,Θ↔Ψ)L (y→Ψ)V(x,y) 2 dy ∫ rxy • Approximate the source by a set of points AL • Aliasing along the shadows’ borders 5 6 Direct Lighting Direct Lighting y ψ y • Random point sampling of ψθy ψ θy the area light sources V(x,y)=?rxy y rxyω’ θx θ x x • Use these points to evaluate Θx x Θ the integral Θ ω cosθxcosθy e 1 shadow ray 9 shadow rays L(x→Θ)= fr (x,Θ↔Ψ)L (y→Ψ)V(x,y) 2 dy 1 ∫ rxy p(y)= AL AS N N 1 D(yi) 1 cosθxcosθyi L(x→Θ)= D(y)dy L(x→Θ) = L(x→Θ) = As f(x,Θ↔Ψ)Le(yi→Ψi ) Vis(x,yi) ∫ ∑ i ∑ 2 N p(y) N rxyi AL i=1 i=1 7 8 Direct Lighting Stratified Sampling 36 shadow rays 100 shadow rays N cosθxcosθyi 1 s e i i L(x→Θ) = ∑A f(x,Θ↔Ψ)L (y→Ψi ) 2 Vis(x,y) 9 shadow rays 9 shadow rays N rxyi i=1 without stratification with stratification 9 10 Stratified Sampling Stratified Sampling 36 shadow rays no 36 shadow rays with 100 shadow rays no 100 shadow rays with stratification
    [Show full text]
  • Rendering Equation and Its Solution
    Computer graphics III – Rendering equation and its solution Jaroslav Křivánek, MFF UK [email protected] Global illumination – GI Direct illumination 2 Review: Reflection equation “Sum” (integral) of contributions over the hemisphere: Lr (x,ωo ) = Li (x,ωi )⋅ fr (x,ωi → ωo )⋅cosθi dωi ∫ H (x) n ω Li(x, i) Emitted radiance Lo(x, ωo) dωi θ L (x,ω ) = L (x,ω ) θo i o o e o + Lr (x,ωo ) Lr(x, ωo) Total outgoing rad. Reflected rad. From local reflection to global light transport Reflection equation (local reflection) Lo (x,ωo ) = Le (x,ωo ) + Li (x,ωi )⋅ fr (x,ωi → ωo )⋅cosθi dωi ∫ H (x) Where does the incoming radiance Li(x, ωi) come from? From other places in the scene ! Lo( r(x, ωi), -ωi) r(x, ωi) ω = ω −ω = Li (x, i ) Lo (r(x, i ), i ) L (x,ω ) i i x Ray casting function CG III (NPGR010) - J. Křivánek 2015 From local reflection to global light transport Plug for Li into the reflection equation Lo (x, ωo ) = Le (x,ωo ) + ω −ω ⋅ ω → ω ⋅ θ ω ∫ Lo (r(x, i ), i ) fr (x, i o ) cos i d i H (x) Incoming radiance Li drops out Outgoing radiance Lo at x described in terms of Lo at other points in the scene CG III (NPGR010) - J. Křivánek 2015 Rendering equation Remove the subscript “o” from the outgoing radiance: ω = ω L (x, o ) Le (x, o ) + ω −ω ω → ω θ ω ∫ L(r(x, i ), i ) fr (x, i o )cos i d i H (x) Description of the steady state = energy balance in the scene Rendering = calculate L(x, ωo) for all points visible through pixels, such that it fulfils the rendering equation CG III (NPGR010) - J.
    [Show full text]
  • The Rendering Equation Radiosity
    The Rendering Equation Direct (local) illumination Light directly from light sources No shadows Indirect (global) illumination Hard and soft shadows Diffuse interreflections (radiosity) Glossy interreflections (caustics) CS348B Lecture 12 Pat Hanrahan, Spring 2011 Radiosity CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 1 Lighting Effects Hard Shadows Soft Shadows Caustics Indirect Illumination CS348B Lecture 12 Pat Hanrahan, Spring 2011 Challenge To evaluate the reflection equation the incoming radiance must be known To evaluate the incoming radiance the reflected radiance must be known CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 2 To The Rendering Equation Questions 1. How is light measured? 2. How is the spatial distribution of light energy described? 3. How is reflection from a surface characterized? 4. What are the conditions for equilibrium flow of light in an environment? CS348B Lecture 12 Pat Hanrahan, Spring 2011 The Grand Scheme Light and Radiometry Energy Balance Surface Volume Rendering Equation Rendering Equation Radiosity Equation CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 3 Energy Balance Balance Equation Accountability [outgoing] - [incoming] = [emitted] - [absorbed] Macro level The total light energy put into the system must equal the energy leaving the system (usually, via heat). Micro level The energy flowing into a small region of phase space must equal the energy flowing out. CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 4 Surface Balance Equation [outgoing] = [emitted] + [reflected] CS348B Lecture 12 Pat Hanrahan, Spring 2011 Direction Conventions BRDF Surface vs. Field Radiance CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 5 Two-Point Geometry Ray Tracing CS348B Lecture 12 Pat Hanrahan, Spring 2011 Coupling Equations Invariance of radiance CS348B Lecture 12 Pat Hanrahan, Spring 2011 Page 6 The Rendering Equation Directional form Transport operator Integrate over i.e.
    [Show full text]