Low-Temperature Artificial Maturation Studies of Type II and Type III Kerogens: Implications for Biogenic Gas Production

Total Page:16

File Type:pdf, Size:1020Kb

Low-Temperature Artificial Maturation Studies of Type II and Type III Kerogens: Implications for Biogenic Gas Production Old Dominion University ODU Digital Commons Chemistry & Biochemistry Theses & Dissertations Chemistry & Biochemistry Spring 2016 Low-Temperature Artificial Maturation Studies of Type II and Type III Kerogens: Implications for Biogenic Gas Production Albert Willy Nguena Kamga Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/chemistry_etds Part of the Chemical Engineering Commons, Geochemistry Commons, and the Organic Chemistry Commons Recommended Citation Nguena Kamga, Albert W.. "Low-Temperature Artificial Maturation Studies of Type II and Type III Kerogens: Implications for Biogenic Gas Production" (2016). Doctor of Philosophy (PhD), Dissertation, Chemistry & Biochemistry, Old Dominion University, DOI: 10.25777/5sj5-4y45 https://digitalcommons.odu.edu/chemistry_etds/8 This Dissertation is brought to you for free and open access by the Chemistry & Biochemistry at ODU Digital Commons. It has been accepted for inclusion in Chemistry & Biochemistry Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. LOW-TEMPERATURE ARTIFICIAL MATURATION STUDIES OF TYPE II AND TYPE III KEROGENS: IMPLICATIONS FOR BIOGENIC GAS PRODUCTION by Albert Willy Nguena Kamga B.S. May 2010, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY CHEMISTRY OLD DOMINION UNIVERSITY May 2016 Approved by: Patrick G. Hatcher (Director) Francoise Behar (Co-Director) Francois Baudin (Co-Director) James W. Lee (Member) Sandeep Kumar (Member) John Cooper (Member) ABSTRACT LOW-TEMPERATURE ARTIFICIAL MATURATION STUDIES OF TYPE II AND TYPE III KEROGENS: IMPLICATIONS FOR BIOGENIC GAS FORMATION Albert Willy Nguena Kamga Old Dominion University, 2015 Director: Dr. Patrick G. Hatcher Co-Directors: Dr. Francoise Behar Dr. Francois Baudin Ancient organic matter (OM) in shales and coals, known mainly as Type II and Type III OM are known to produce both biogenic, thermogenic gas and oil. In this dissertation, mild artificial maturation, via closed system pyrolysis, is employed to determine the thermal reactivity of Type II and Type III OM beyond diagenesis. We select three Type II kerogens: i) Type II kerogen isolated from recent cores (3.3 Ma, Ro = 0.28) recovered from an upwelling basin in Namibia, Africa referred to as ODP Sediment, ii) Type II-S isolated from sediments (150 Ma, Ro = 0.38) recovered from an outcrop near the Volga River, Russia referred to as Bazhenov Source Rock (S.R.), iii) Type II kerogen isolated from sediments (185 Ma, Ro = 0.62) recovered from an outcrop in the Paris Basin, France referred to as Toarcian S.R.. Furthermore, we select four Type III kerogens in which three from deep coalbed layers in Shimokita, Japan and the fourth from the Calvert Bluff Formation, Texas, USA. Our results show that the structural identity is significantly altered because a major portion of oxygenated compounds such as Alkyl – O, esters and carboxylic acids is lost based on solid state 13C Nuclear Magnetic Resonance of the solid residues. Gaseous and liquid recoveries quantitatively show that CO2 and asphaltenes are the primary thermal products. For Type II kerogens, CO2 was co-generated with asphaltenes while for Type III kerogen generated less thermal products with CO2 slightly later than asphaltenes. For Type III kerogens, the three coalbeds seem to generate thermal products with respect to their maturity levels. Using optimized activation energies set between 30 and 48 kcal/mole, bulk kinetics studies reveal that the onset of thermal generation of CO2 and asphaltenes from Type II and Type III kerogens initiates at 10oC with maximum product yields reached below 70oC. The molecular characterization of asphaltenes reveals the dominance of long chain fatty acids and diacids with similar bulk kinetic parameters as the global degradation of kerogens. These long chain fatty acids and diacids possess the highest conversion rate into biogenic methane. iv © 2016, by Albert Willy Nguena Kamga, All Rights Reserved. v This dissertation is dedicated to pertinacity, hard work and motivation. vi ACKNOWLEDGMENTS There are more than a few people that I would like to thank for their unmeasurable support and tremendous encouragement throughout my entire college experience at Old Dominion University. First of all, I would like to recognize my advisor Dr. Patrick G. Hatcher for his guidance, motivation, harshness when necessary and fatherly advice throughout my dissertation experience which allowed me to reach my utmost goal so far: to become a Doctoral scholar with my Ph.D. in Chemistry. He transformed my scientific writing to its best shape ever and he also taught me concise critical thinking and how important it is to always think about the next step and next discovery. I would also like to thank Dr. Francoise Behar, my co-advisor, who did so much for me since I met and started working with her in 2011. She has tremendously influenced my Ph.D. research and without her I probably wouldn’t have had research funding especially from a top-tier petroleum company, worldwide. She has taught me the importance of being rigorous, consistent, creative, fully engaged and disciplined in order to conserve my reliability at the top. And for that I am most grateful. I would also like to recognize Dr. Francois Baudin, my co-advisor, who guided me along my last three years of doctoral research and motivated me to go above and beyond which I really appreciate. I also take the opportunity to thank the rest of my doctoral defense committee members, Dr. Lee, Dr. Cooper and Dr. Kumar, for valuable discussions, tremendous insights about my research topic and its application in the real world. It became so easy when working with an amazing Hatcher group. We support each other to the point of critically proof-reading each other’s manuscript. I am so happy to be a part of this vii family and would like to indicate the most influential members during my time at ODU: Dr. Aron Stubbins, Derek Waggoner, Dr. Blaine Hartman, Sarah Gurganus, Dr. Wassim Obeid, Dr. Amanda Willoughby, Dr. Rachel Sleighter, Dr. Andrew Wosniak, Nicole Didonato, Isiah Ruhl, Susan Hatcher, Stephanie McElhenie, Seyyedhadi Khatami and Jared Callan. They all have made my experience at ODU more exciting, more productive and most definitely more positive. I would like to thank my entire family for their infinite support especially the Kamga family, the Wambo family, the Fomenkeu family and the Pô Meche Family especially the Talom family. I also want to thank my friends outside of my doctoral research for being social support, soccer teammates and fishing buddies. I thank in particular David Nminibapiel, Keba Sane, Rodwyn Tucker, Marc St-Cyr, Michael Dondre, Ewa Kenneth, Idriss Njike, Jovanie Tankeu, Manuel Mukuri, Freddy Kameni and the entire “Avengers F.C.” and “Mollywhoppers” squads. I am especially grateful for the reassurance my parents, Rose and Pierre-Joel Kamga, and my siblings, Aurelie, Siegfried and Stephanie Kamga, have provided me throughout all of my academic journey because they are the main reasons that I had the strength to pursue my academic goals. Lastly, I would like to acknowledge Lynzee Horton for her endless support and dealing with my stressful days and happy days. She has been there every day for me since day one and I will always be grateful. viii TABLE OF CONTENTS Page LIST OF TABLES .............................................................................................................x LIST OF FIGURES .........................................................................................................xiii Chapter I. INTRODUCTION ...............................................................................................1 II. QUANTITATIVE ANALYSIS OF LONG CHAIN FATTY ACIDS PRESENT IN A TYPE I KEROGEN USING ESI-FT-ICR-MS: COMPARED WITH BF3/MeOH METHYLATION/GC-FID ..............................................................11 1. INTRODUCTION .........................................................................................11 2. SAMPLE DESCRIPTION .............................................................................15 3. EXPERIMENTAL .........................................................................................15 4. RESULTS AND DISCUSSION ....................................................................20 5. CONCLUSIONS............................................................................................37 III. LOW-TEMPERATURE CRACKING OF TYPE II KEROGEN: KINETIC STUDY OF THE EARLY CO-GENERATION OF ASPHALTENES AND CO2 AS POTENTIAL SUBSTRATES FOR METHANOGENESIS .........................39 1. INTRODUCTION .........................................................................................39 2. METHODS ....................................................................................................42 3. SAMPLE DESCRIPTION .............................................................................47 4. RESULTS ......................................................................................................49 5. DISCUSSION ................................................................................................72 6. CONCLUSIONS............................................................................................90 IV. ASPHALTENES GENERATED FROM LOW-TEMPERATURE CRACKING OF TYPE II KEROGEN: MOLECULAR
Recommended publications
  • Potential Capacity for Geologic Carbon Sequestration in the Midcontinent Rift System in Minnesota
    MINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director POTENTIAL CAPACITY FOR GEOLOGIC CARBON SEQUESTRATION IN THE MIDCONTINENT RIFT SYSTEM IN MINNESOTA L. Harvey Thorleifson, Minnesota Geological Survey, Editor A report prepared in fulfillment of the requirements of Minnesota Legislative Session 85 Bill S. F. 2096 Minnesota Geological Survey Open File Report OFR-08-01 University of Minnesota Saint Paul – 2008 Cover figure credit: Iowa Geological Survey 2 POTENTIAL CAPACITY FOR GEOLOGIC CARBON SEQUESTRATION IN THE MIDCONTINENT RIFT SYSTEM IN MINNESOTA 3 This open file is accessible from the web site of the Minnesota Geological Survey (http://www.geo.umn.edu/mgs/) as a PDF file readable with Acrobat Reader. Date of release: 24 January 2008 Recommended citation Thorleifson, L. H., ed., 2008, Potential capacity for geologic carbon sequestration in the Midcontinent Rift System in Minnesota, Minnesota Geological Survey Open File Report OFR-08-01, 138 p Minnesota Geological Survey 2642 University Ave West Saint Paul, Minnesota 55114-1057 Telephone: 612-627-4780 Fax: 612-627-4778 Email address: [email protected] Web site: http://www.geo.umn.edu/mgs/ ©2008 by the Regents of the University of Minnesota All rights reserved The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation. 4 CONTENTS EXECUTIVE SUMMARY L. H. Thorleifson . 7 INTRODUCTION L. H. Thorleifson . 11 CLIMATE CHANGE L. H. Thorleifson . 11 Introduction . 11 Intergovernmental Panel on Climate Change (IPCC) .
    [Show full text]
  • Faflak 5379 6208 0448F Final Pass.Indd
    Marking Time Romanticism & Evolution EditEd by JoEl FaFlak MARKING TIME Romanticism and Evolution EDITED BY JOEL FAFLAK Marking Time Romanticism and Evolution UNIVERSITY OF TORONTO PRESS Toronto Buffalo London © University of Toronto Press 2017 Toronto Buffalo London www.utorontopress.com ISBN 978-1-4426-4430-4 (cloth) Library and Archives Canada Cataloguing in Publication Marking time : Romanticism and evolution / edited by Joel Faflak. Includes bibliographical references and index. ISBN 978-1-4426-4430-4 (hardcover) 1. Romanticism. 2. Evolution (Biology) in literature. 3. Literature and science. I. Faflak, Joel, 1959–, editor PN603.M37 2017 809'.933609034 C2017-905010-9 CC-BY-NC-ND This work is published subject to a Creative Commons Attribution Non-commercial No Derivative License. For permission to publish commercial versions please contact University of Tor onto Press. This book has been published with the help of a grant from the Federation for the Humanities and Social Sciences, through the Awards to Scholarly Publications Program, using funds provided by the Social Sciences and Humanities Research Council of Canada. University of Toronto Press acknowledges the financial assistance to its publishing program of the Canada Council for the Arts and the Ontario Arts Council, an agency of the Government of Ontario. Funded by the Financé par le Government gouvernement of Canada du Canada Contents List of Illustrations vii Acknowledgments ix Introduction – Marking Time: Romanticism and Evolution 3 joel faflak Part One: Romanticism’s Darwin 1 Plants, Analogy, and Perfection: Loose and Strict Analogies 29 gillian beer 2 Darwin and the Mobility of Species 45 alan bewell 3 Darwin’s Ideas 68 matthew rowlinson Part Two: Romantic Temporalities 4 Deep Time in the South Pacifi c: Scientifi c Voyaging and the Ancient/Primitive Analogy 95 noah heringman 5 Malthus Our Contemporary? Toward a Political Economy of Sex 122 maureen n.
    [Show full text]
  • Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life
    ASTROBIOLOGY Volume 10, Number 2, 2010 ª Mary Ann Liebert, Inc. DOI: 10.1089=ast.2009.0344 Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life Craig P. Marshall,1 Howell G.M. Edwards,2 and Jan Jehlicka3 Abstract Investigating carbonaceous microstructures and material in Earth’s oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. There- fore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material.
    [Show full text]
  • Basic Geochemical Evaluation of Unconventional Resource Plays Stephan H
    Basic Geochemical Evaluation of Unconventional Resource Plays Stephan H. Nordeng Introduction These changes provide clues that may answer questions such as: Basin-centered petroleum accumulations such as the Bakken Formation in the Williston Basin of North Dakota have recently been Is a given kerogen capable of producing petroleum? recognized as being important in the future development of energy resources. There are several features that these petroleum systems If so, what are the likely types of petroleum that may have in common. The systems typically include the deposition result? of organic-rich rocks that form the core of the petroleum system when subjected to elevated temperatures for suffi cient periods of Did a given source rock generate petroleum? time. This allows for the source rock to “mature” to the point that oil is generated. Once a suffi cient amount of generation has If so, how fast and possibly how much? occurred the oil is expelled into neighboring rocks and, in instances when these rocks are poorly permeable, the oil accumulates under Source Rock Evaluation high pressures. The three interconnected processes of deposition, Probably the most important aspect of evaluating a potential maturation, and expulsion may all be studied using various types source rock involves determining the amount and character of of geochemical analyses. organic matter that could have been available, given the proper conditions, to generate oil and gas. One of the fi rst things to Deposition of a potential source rock involves a tightly constrained consider is just how much organic carbon is currently present set of circumstances. These include high rates of biological in the rock.
    [Show full text]
  • An Insight from Density Functional Theory Calculations And
    www.nature.com/scientificreports OPEN Model representations of kerogen structures: An insight from density functional theory calculations and Received: 22 February 2017 Accepted: 26 June 2017 spectroscopic measurements Published online: 1 August 2017 Philippe F. Weck1, Eunja Kim2, Yifeng Wang1, Jessica N. Kruichak1, Melissa M. Mills1, Edward N. Matteo1 & Roland J.-M. Pellenq3,4,5 Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Signifcant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fngerprints for tracing kerogen evolution. Kerogen is a high-molecular weight, carbonaceous polymer material resulting from the condensation of organic residues in sedimentary rocks; such organic constituent is insoluble either in aqueous solvents or in common organic solvents1.
    [Show full text]
  • Native Polycyclic Aromatic Hydrocarbons (PAH) in Coals – a Hardly Recognized Source of Environmental Contamination
    SCIENCE OF THE TOTAL ENVIRONMENT 407 (2009) 2461– 2473 available at www.sciencedirect.com www.elsevier.com/locate/scitotenv Review Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination C. Achtena,b, T. Hofmanna,⁎ a University of Vienna, Department of Environmental Geosciences, Althanstr. 14, 1090 Vienna, Austria b University of Münster, Department of Applied Geology, Corrensstr. 24, 48149 Münster, Germany ARTICLE DATA ABSTRACT Article history: Numerous environmental polycyclic aromatic hydrocarbon (PAH) sources have been Received 15 October 2008 reported in literature, however, unburnt hard coal/ bituminous coal is considered only Received in revised form rarely. It can carry native PAH concentrations up to hundreds, in some cases, thousands of 29 November 2008 mg/kg. The molecular structures of extractable compounds from hard coals consist mostly Accepted 5 December 2008 of 2–6 polyaromatic condensed rings, linked by ether or methylene bridges carrying methyl Available online 4 February 2009 and phenol side chains. The extractable phase may be released to the aquatic environment, be available to organisms, and thus be an important PAH source. PAH concentrations and Keywords: patterns in coals depend on the original organic matter type, as well as temperature and Native PAH pressure conditions during coalification. The environmental impact of native unburnt coal- Bituminous coal bound PAH in soils and sediments is not well studied, and an exact source apportionment is Hard coal hardly possible. In this paper, we review the current state of the art. Sediment © 2008 Elsevier B.V. All rights reserved. Soil Contents 1. Introduction .........................................................2462 2. Reserves and production ..................................................2462 3.
    [Show full text]
  • Shale Kerogen – Hydraulic Fracturing Fluid Interactions and Contaminant Release
    SHALE KEROGEN – HYDRAULIC FRACTURING FLUID INTERACTIONS AND CONTAMINANT RELEASE Megan K. Dustin1, John R. Bargar2, Adam D. Jew,1,2 Anna L. Harrison1,2, Claresta Joe-Wong1, Dana L. Thomas1, Gordon E. Brown, Jr.1,2,3, and Katharine Maher4* 1 Department of Geological Sciences, School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA 2 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94062, USA 3 Department of Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94062, USA 4 Department of Earth Systems Science, School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA *Corresponding author: [email protected] Abstract The recent increase in unconventional oil and gas exploration and production has prompted a large amount of research on hydraulic fracturing, but the majority of chemical reactions between shale minerals and organic matter with fracturing fluids are not well understood. Organic matter, primarily in the form of kerogen, dominates the transport pathways for oil and gas; thus any alteration of kerogen (both physical and chemical properties) upon exposure to fracturing fluid may impact hydrocarbon extraction. In addition, kerogen is enriched in metals, making it a potential source of heavy metal contaminants to produced waters. In this study, we reacted two different kerogen isolates of contrasting type and maturity (derived from Green River and Marcellus shales) with a synthetic hydraulic fracturing fluid for two weeks in order to determine the effect of fracturing fluids on both shale organic matter and closely associated minerals.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons As Plausible Prebiotic Membrane Components
    Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components Joost Groen, David W. Deamer, Alexander Kros & Pascale Ehrenfreund Origins of Life and Evolution of Biospheres The Journal of the International Astrobiology Society ISSN 0169-6149 Volume 42 Number 4 Orig Life Evol Biosph (2012) 42:295-306 DOI 10.1007/s11084-012-9292-3 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Orig Life Evol Biosph (2012) 42:295–306 DOI 10.1007/s11084-012-9292-3 PREBIOTIC CHEMISTRY Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components Joost Groen & David W. Deamer & Alexander Kros & Pascale Ehrenfreund Received: 21 May 2012 /Accepted: 21 June 2012 / Published online: 15 July 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templat- ing genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocar- bons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today.
    [Show full text]
  • Life in the Solar System
    Adv. Space Res. Vol. 24, No. 4, pp. 417-433, 1999 Pergamon 0 1999 COSPAR. Published by Elsevier Science Ltd. AH rights reserved Printed in Great Britain 0273-1177/99 $20.00 + 0.00 www.elaevier.nl/locate/asr PII: SO273I 177(99)00457-3 LIFE IN THE SOLAR SYSTEM A. Brack Centre de Biophysique Moleculaire, CNRS, Rue Charles Sadron, Orleans, France. Fax: +33-2-38-63-15-17; brack@cnrs-orleansfr ABSTRACT Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth’s atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial- meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth.
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]
  • Exobiology in the Solar System & the Search for Life on Mars
    SP-1231 SP-1231 October 1999 Exobiology in the Solar System & The Search for Life on Mars for The Search Exobiology in the Solar System & Exobiology in the Solar System & The Search for Life on Mars Report from the ESA Exobiology Team Study 1997-1998 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1231 October 1999 EXOBIOLOGY IN THE SOLAR SYSTEM AND THE SEARCH FOR LIFE ON MARS Report from the ESA Exobiology Team Study 1997-1998 Cover Fossil coccoid bacteria, 1 µm in diameter, found in sediment 3.3-3.5 Gyr old from the Early Archean of South Africa. See pages 160-161. Background: a portion of the meandering canyons of the Nanedi Valles system viewed by Mars Global Surveyor. The valley is about 2.5 km wide; the scene covers 9.8 km by 27.9 km centred on 5.1°N/48.26°W. The valley floor at top right exhibits a 200 m-wide channel covered by dunes and debris. This channel suggests that the valley might have been carved by water flowing through the system over a long period, in a manner similar to rivers on Earth. (Malin Space Science Systems/NASA) SP-1231 ‘Exobiology in the Solar System and The Search for Life on Mars’, ISBN 92-9092-520-5 Scientific Coordinators: André Brack, Brian Fitton and François Raulin Edited by: Andrew Wilson ESA Publications Division Published by: ESA Publications Division ESTEC, Noordwijk, The Netherlands Price: 70 Dutch Guilders/ EUR32 Copyright: © 1999 European Space Agency Contents Foreword 7 I An Exobiological View of the
    [Show full text]
  • Methane and Carbon Dioxide Adsorption in Kerogen Models Using Molecular Simulations Felipe Perez† and Deepak Devegowda †[email protected]
    Methane and carbon dioxide adsorption in kerogen models using molecular simulations Felipe Perezy and Deepak Devegowda [email protected] 1. Introduction 2. Shales • Shales are sedimentary rocks composed of (1) a mineral matrix and (2) organic matter. Both me- dia may contribute to the storage of hydrocar- bons and non-hydrocarbon species in unconven- tional reservoirs. • Kerogen is a mixture of organic chemical com- pounds that make up a portion of the organic matter in shales. • Realistic kerogen models were constructed imple- menting a molecular dynamics simulated anneal- ing process. • Adsorption experiments were simulated using grand canonical Monte Carlo for methane, and configurational biased/continuous fractional com- ponent for carbon dioxide. SEM image of an ion-milled Barnett shale sample. Modified BSE images of nine different shales [2]. 3. Organic pores from reference [1]. 6. Characterization 1.0 3 ρb = 1.147 g/cm Model 0.8 ρ = 1.199 g/cm3 b 1 2 3 3 ρb = 1.209 g/cm 3 0.6 Bulk density [g/cm ] 1:147 1:199 1:209 Porositya [%] 24 19 19 0.4 Surface areab [m2/g] 399 279 207 Kerogen density [g/cm3] 1:514 1:482 1:493 Probability density 0.2 a He probe. b 0.0 N2 probe. Porosity may be found within the organic matter, the 2 4 6 8 10 12 14 inorganic matrix, or both. SEM image of a kerogen body Pore width[Å] Properties usually determined experimentally in laboratory. In this work, MC simulations were carried out to mimic such experiments. showing porosity.
    [Show full text]