Conceptual Design of Civil Airplane Composite Wingbox Structures

Total Page:16

File Type:pdf, Size:1020Kb

Conceptual Design of Civil Airplane Composite Wingbox Structures CONCEPTUAL DESIGN OF CIVIL AIRPLANE COMPOSITE WINGBOX STRUCTURES Vladimir Soloshenko Moscow Aviation Institute (National Research University) Keywords: design, wing, composite materials, joints Abstract shown in work: multi ribs structure with The object of research in work is a wing of stringer stiffened panels, multi spars structure with flat panels without stringers, sandwich civil aircraft with take-off weight m0=65000 kg and the following aerodynamic parameters: panels’ structure. Advantages and aspect ratio λ=11,5, ¼ chord sweep χ=25˚ and disadvantages of each design approach and wingspan 35 m. structural schemes were emphasized. Also work The work presents analyzes of existing and shows several variants of wing-root splice joints new civil airplanes composite wingbox for different composite wings design and discuss structures in which the problem of selection and the problems associated with each splice design. verification of stress allowable for wing design An algorithm of rational design of the composite is emphasized. Several basic design concepts of wing structures is developed. composite wingbox and wing-root splice joints are shows. Introduction As was shown that the majority of airframe The minimal mass of airframe`s manufactures uses traditional structural construction is one of the basic criteria schemes for composite wings that were used on determining the perfection of the airplane metal wings for a long time. It is rational desire construction. Its implementation depends on the to reduce the technical risk and increase the correct choice of materials, construction of the spectrum of using well-known procedures for composite material units and their parameters. wing certification even if it's made of composite This paper dwells upon the main demands materials. which should be taken into consideration when As shown in work the stress allowables for designing the wing construction from composite wing design depend not only on characteristics materials for trunk route airplane, views the of composite materials but also mechanical and concepts of composite wingbox construction thermal loading, design of irregular zones, and wing-root splice joints with wing center- certification requirements and damage section, and describes the algorithm of scenarios during manufacturing and operation designing wingbox in regular zone and zone of must be considered at all design stages. joints with wing center-section. The effect of using composite materials is The paper aims at: significantly small by all this factors in compare 1) Analyzing the existing constructions of with metals. One way to increase potential composite wingbox for civil airplanes. weight effects is to increase impact resistance 2) Defining the specifics of verification of of composite structures by using matrix systems design stress allowables for composite with higher interlaminar fracture toughness or airframe structures. introduce the fiberglass crack stoppers to the 3) Examining basic concepts of the wings wing design. structure layouts of a civil airplanes and Several design concepts and structural wingbox root splice joints. schemes of civil aircrafts composite wing is 1 VLADIMIR SOLOSHENKO Fig.1. The object of research – a wingbox of a are made of composite materials by autoclave medium-range aircraft (regular zone of the molding process. The ribs are made of structure and the root splice joint zone with aluminum alloy. Fig. 2 shows photograph of wing center section) wing root section shows the refined design of the upper wing skin stringer ends which form 4) Working out the methodology of the wingbox part of the side of body structural join with the structural design in regular zone and root splice center wing box. The wingbox and center wing joints. section are spliced together through tapes of the inboard ribs with metal plates on the upper and 1. Analysis of the existing composite lower wing surfaces and with metal fittings on materials wing structures of the trunk route the top panel stringers by means of mechanical aircraft fasteners. In order to prevent stringer delamination due to abrupt drops in stiffness, on The Boeing Company has developed a the basis of the test results, the decision has family of long-range widebody aircraft Boeing been made to produce them with U-shaped 787 Dreamliner which broadly uses composite cutouts in the stringers. [9]. materials in the construction of the airframe. By now the tests have been completed and the commercial exploitation of the aircraft has begun. The Boeing 787 wing is manufactured by the Japanese company Mitsubishi Heavy Industries. The wing of Boeing 787 is a monobloc two-spar wing designed within the multi rib Fig.2. Wingbox root section of Boeing 787 structural layout. The top and bottom panels Dreamliner [11] with I-shaped cross-section stringers and spars 2 CONCEPTUAL DESIGN OF CIVIL AIRPLANE COMPOSITE WINGBOX STRUCTURES The Airbus Company is implementing a project of long-range Airbus A350 aircraft family with a broad usage of composite materials. The wing of Airbus A350 is a two- spar wing designed within the multi rib structural layout. (Fig.3). Panels with T-shaped stringers and spars are made of composite materials. The ribs are made of aluminum- lithium alloy [8]. In the joint zone of the outer wing with wing center-section the stringer`s wall is being dropped, going into the thickness of the panel. Fig.4. MS-21 wingbox prototype [10] 2. Verification of design stress allowables for the composite structural design Fig.3. Airbus A350 wing CAD-model [8] Russian Aircraft Corporation Irkut is developing a family of medium-range MS-21 aircraft. The MS-21 wing will be manufactured Fig.5. Interrelation between the composite with a broad usage of composite materials. The materials characteristics and the direction of the wing is being designed by the company CJSC fibers [7] (a - location of unidirectional fibers, AeroComposite in cooperation with the b - effect of angles φ to the characteristics of the company Fischer Advanced Composite fibers) Components AG. At the present moment a prototype of MS-21 wingbox has been designed Composite materials achieve the highest and manufactured. values of mechanical characteristics in the The MS-21 wingbox structural layout process of loading along the unidirectional comprises two spars, top and bottom composite fibers (φ = 0 °, Fig. 5a). When the armor angle stringer panels and the ribs. T-shaped stringers shifts the material characteristics are changed of the top and bottom panels have the same (Fig. 5b). [7] pitch and are parallel to the conditional Design stress allowables is the values of reference plane. In the joint zone of the outer the characteristic of the material, which are wing with wing center-section the stringer`s determined by the results of tests on the level of wall is being dropped, going into the thickness a multilayer material or a layer on probability of the panel. basis and are used in design and calculation of the composite construction durability. The choice of design stress allowables for a wing (Fig. 6) is a rather difficult task, because its value depends not only on the mechanical characteristics of the construction material, but also on the nature of external influence (loading), the existence of local construction irregularities, local stress concentrators and 3 VLADIMIR SOLOSHENKO Fig.6. Criteria for choosing design stress overall and local buckling for the composite allowables construction is not allowed for calculated stress. In the absence of sufficient amount of damage caused in the process of manufacturing experimental works and the reliable strength and operating of the construction [1] characteristics at the initial stages of designing The maximum level of strain compression additional reducing safety indexes for the for the material is set to 0,3%. This level of composites are being used. compression is chosen for the demands of For the basic strength elements of the providing construction durability after hitting, construction the durability criteria are being moisture saturation, fatigue and survivability introduced, which assess the level of allowable requirements. calculated stress σ, derived from the overall For the top panel the critical cases are strength calculations. compression after hitting and compression of As such criteria for a wing structure the laminate (package) with free orifice. For the following conditions may be considered (by lower panel, the possible option is stretching groups of strength elements). with both free and filled orifice. It is also For wing composite coverings: advisable to consider the possibility of a) stretched zone - σ ≤ [σ], where [σ] is set increasing the strain compression for the by the requirements of static durability, composite package for the lower wing panels to endurance and survivability in view of the level of 0,4% . In the process of deterioration of the mechanical characteristics at designing it should be considered that the moisture saturation, exposure to temperatures, possible damage caused by technological nature and emerging in the process of exploitation; 4 CONCEPTUAL DESIGN OF CIVIL AIRPLANE COMPOSITE WINGBOX STRUCTURES b) compressive zone - no general or local manufactured in one - The complexity of buckling is allowed for this zone up to the level production cycle, if the manufacturing the of calculated loads σcr ≥ σ; stringer has a T-shaped panels in one c) the level of relative deformations of the cross- section; production cycle, if construction
Recommended publications
  • Wing Root & Landing Gear Door Seal Replacement
    Wing Root & Landing Gear Door Seal Replacement One of the oldest original components remaining on my Baron (and likely other members planes) was surely the stiff and ragged wing root seal. In researching this component I learned that the wing root and tail seals were installed on the wings and tails before the marriage to the airframe. What lies below the top skin of the wing and tail is a length of rubber “finger” (Figure 1) as an integral part of the seal. Figure 1 This “finger” holds the seal in place and was likely glued at the factory, grabbing the backside of the wing and tail skin. With time and age these original rubber seals have taken quite a beating. With an extended winter annual downtime this year I chose to tackle this really tedious project while waiting for other components that were out for overhaul. A word of caution, this is as tedious as it gets if you choose to dig out the finger from below the top surface skins using the very narrow gap between the skin and the fuselage. Here is a pirep from a Bonanza A36 owner on how he tackled his seal replacement: “I cut the majority of the old seal off using razor blade, leaving a small lip sticking above the wing. I then used a small pick bent at a 90 degree angle, with about a 3/8" 'hook' on the end. Using the hook, I stuck it under the wing skin, between the skin and the old rubber wing seal lip under the skin, and forced it along the chord of the wing.
    [Show full text]
  • Automated Generic Parameterized Design of Aircraft Fairing and Windshield
    Automated generic parameterized design of aircraft fairing and windshield Vijaykumar Govindharajan Aakash Narender Singh LIU-IEI-TEK-A-12/01271-SE Department of Management and Engineering Division of Flumes Department of Management and Engineering SE-581 83 Linköping, Sweden i ii Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purpose.
    [Show full text]
  • Stress Analysis of an Aircraft Fuselage with and Without Portholes Using
    cs & Aero ti sp au a n c o e r E e Hadjez and Necib, J Aeronaut Aerospace Eng 2015, 4:1 n A g f i o n Journal of Aeronautics & Aerospace l e DOI: 10.4172/2168-9792.1000138 a e r n i r n u g o J Engineering ISSN: 2168-9792 Research Article Open Access Stress Analysis of an Aircraft Fuselage with and without Portholes using CAD/CAE Process Fayssal Hadjez* and Brahim Necib University of Constantine, Faculty of Science and Technology, Department of Mechanical Engineering, Algeria Abstract The airline industry has been marked by numerous incidents. One of the first, who accompanied the start of operation of the first airliners with jet engines, was directly related to the portholes. Indeed, the banal form of the windows was the source of stress concentrations, which combined with the appearance of micro cracks, caused the explosion in flight of the unit. Since that time, all aircraft openings receive special attention in order to control and reduce their impact on the aircraft structure. In this paper we focus on the representation and quantification of stress concentrations at the windows of a regional jet flying at 40000 feet. To do this, we use a numerical method, similar to what is done at major aircraft manufacturers. The Patran/Nastran software will be used the finite element software to complete our goals. Keywords: Aircraft; Bay; Modeling; Portholes; Fuselage; gradually. It is then necessary to pressurize the cabin to the survival Pressurization; Loads and passenger comfort. However this pressurization is not beneficial to the structure as it involves additional structural loads.
    [Show full text]
  • Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft
    Cranfield University Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft School of Engineering PhD Thesis Cranfield University Department of Aerospace Sciences School of Engineering PhD Thesis Academic Year 2008-09 Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft Supervisor: Dr James F. Whidborne May 2009 c Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Abstract The Blended Wing Body (BWB) aircraft offers a number of aerodynamic perfor- mance advantages when compared with conventional configurations. However, while operating at low airspeeds with nominal static margins, the controls on the BWB aircraft begin to saturate and the dynamic performance gets sluggish. Augmenta- tion of aerodynamic controls with the propulsion system is therefore considered in this research. Two aspects were of interest, namely thrust vectoring (TVC) and flap blowing. An aerodynamic model for the BWB aircraft with blown flap effects was formulated using empirical and vortex lattice methods and then integrated with a three spool Trent 500 turbofan engine model. The objectives were to estimate the effect of vectored thrust and engine bleed on its performance and to ascertain the corresponding gains in aerodynamic control effectiveness. To enhance control effectiveness, both internally and external blown flaps were sim- ulated. For a full span internally blown flap (IBF) arrangement using IPC flow, the amount of bleed mass flow and consequently the achievable blowing coefficients are limited. For IBF, the pitch control effectiveness was shown to increase by 18% at low airspeeds.
    [Show full text]
  • Root Seal Installation Intro
    Root Seal Installation Intro: Replacing the wing and stabilizer seals on a plane is not a small job, but it can be done one seal at a time if trying to fit the work into a busy flying schedule. It took us two days to replace one seal. I’m not an expert and made several mistakes on the first try due to a lack of information. I would expect it to take one day or less per seal for the next ones. What follows tries to capture what we learned. Background: The wing root seals have a complex cross section with a center root and a wide lip attached to that root. The root and lip essentially grasp the wing skin out-of- sight below the seal. The root and lip must be pushed through the gap between the wing skin and fuselage such that the lip flips back under the skin and the root is trapped between the edge of the skin and the side of the fuselage. At some point before I owned my Baron, the original seal had been cut off, leaving the root and lip in place glued to the underside of the wing skin. This was a shortcut that is not uncommon but creates later problems. A new seal, after having the center root and lip removed, had been glued to the wing and fuselage using the 3M yellow contact cement. Over time the 3M cement degraded and since there was no root/lip to hold it in place, the replacement seal was torn away by the slipstream.
    [Show full text]
  • For Improved Airplane Performance
    BLENDED WINGLETS FORFOR IMPROVEDIMPROVED AIRPLANEAIRPLANE PERFORMANCEPERFORMANCE New blended winglets on the Boeing Business Jet and the 737-800 commercial airplane offer operational benefits to customers. Besides giving the airplanes a distinctive appear- ance, the winglets create more efficient flight characteristics in cruise and during takeoff and climbout, which translate into additional range with the same fuel and payload. ROBERT FAYE ROBERT LAPRETE MICHAEL WINTER TECHNICAL DIRECTOR ASSOCIATE TECHNICAL FELLOW PRINCIPAL ENGINEER BOEING BUSINESS JETS AERODYNAMICS TECHNOLOGY STATIC AEROELASTIC LOADS BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES TECHNOLOGY/PRODUCT DEVELOPMENT AERO 16 vertical height of the lifting system (i.e., increasing the length of the TE that sheds the vortices). The winglets increase the spread of the vortices along the TE, creating more lift at the wingtips (figs. 2 and 3). The result is a reduction in induced drag (fig. 4). The maximum benefit of the induced drag reduction depends on the spanwise lift distribution on the wing. Theoretically, for a planar wing, induced drag is opti- mized with an elliptical lift distribution that minimizes the change in vorticity along the span. For the same amount of structural material, nonplanar wingtip 737-800 TECHNICAL CHARACTERISTICS devices can achieve a similar induced drag benefit as a planar span increase; however, new Boeing airplane designs Passengers focus on minimizing induced drag with 3-class configuration Not applicable The 737-800 commercial airplane wingspan influenced by additional 2-class configuration 162 is one of four 737s introduced BBJ TECHNICAL CHARACTERISTICS The Boeing Business Jet design benefits. 1-class configuration 189 in the late 1990s for short- to (BBJ) was launched in 1996 On derivative airplanes, performance Cargo 1,555 ft3 (44 m3) medium-range commercial air- Passengers Not applicable as a joint venture between can be improved by using wingtip Boeing and General Electric.
    [Show full text]
  • A-7 Strut Braced Wing Concept Transonic Wing Design
    A-7 Strut Braced Wing Concept Transonic Wing Design by Andy Ko, William H. Mason, B. Grossman and J.A. Schetz VPI-AOE-275 July 12, 2002 Prepared for: National Aeronautics and Space Administration Langley Research Center Contract No.: NASA PO #L-14266 Covering the period June 3, 2001– Nov. 30, 2001 Multidisciplinary Analysis and Design Center for Advanced Vehicles Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061 Executive Summary The Multidisciplinary Analysis and Design (MAD) Center at Virginia Tech has investigated the strut-braced wing (SBW) design concept for the last 5 years. Studies found that the SBW configuration showed savings in takeoff gross weight of up to 19%, and savings in fuel weight of up to 25% compared to a similarly designed cantilever wing transport aircraft. In our work we assumed that computational fluid dynamics (CFD) would be used to achieve the target aerodynamic performance levels. No detailed CFD design of the wing was done. In this study, we used CFD to do the aerodynamic design for a proposed SBW demonstration using a re-winged A7 aircraft. The goal was to design a standard constant isobar transonic cruise wing, together with the strut. The wing/pylon/strut junction would be an integral part of the aerodynamic design. We did this work in consultation with NASA Langley Configuration Aerodynamics branch members through a weekly teleconference, using PDF files to allow them to visualize the progress. They provided us with the codes required to do the work, although one of the codes assumed to be available was not.
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 How Air Trvel New Momentum for My Return Smll Nrrowbodies? ™ $14.95 APRIL 20-MAY 3, 2020 SUSTAINABLY Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Sizing and Layout Design of an Aeroelastic Wingbox Through Nested Optimization
    Sizing and Layout Design of an Aeroelastic Wingbox through Nested Optimization Bret K. Stanford∗ NASA Langley Research Center, Hampton, VA, 23681 Christine V. Juttey Craig Technologies, Inc., Cape Canaveral, FL, 32920 Christian A. Coker z Mississippi State University, Starkville, MS, 39759 The goals of this work are to 1) develop an optimization algorithm that can simulta- neously handle a large number of sizing variables and topological layout variables for an aeroelastic wingbox optimization problem and 2) utilize this algorithm to ascertain the ben- efits of curvilinear wingbox components. The algorithm used here is a nested optimization, where the outer level optimizes the rib and skin stiffener layouts with a surrogate-based optimizer, and the inner level sizes all of the components via gradient-based optimization. Two optimizations are performed: one restricted to straight rib and stiffener components only, the other allowing curved members. A moderate 1.18% structural mass reduction is obtained through the use of curvilinear members. I. Introduction Layout optimization of a wingbox structure, a form of topology optimization, involves deciding upon the best placement of ribs, spars, and stiffeners within a semimonocoque structure. There are numerous examples of layout design in the literature, including Refs.1-6. Some of these papers adhere to conventional orthogonal layouts of ribs, spars, and stiffeners,3 others blend the roles of these components through angled and/or curved members,2,5,6 and others abandon this convention entirely with a complex network of full- and partial-depth members.1,4 Regardless of how the layout design is conducted, sizing design must be included as well, by optimizing the thickness distribution of the various shell components: ribs, spars, stiffeners, and skins (cover panels).
    [Show full text]
  • Structural Analysis of a Wing Box
    L Ferroni Soares et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 5, Issue 5, ( Part -4) May 2015, pp.23-31 RESEARCH ARTICLE OPEN ACCESS Structural Analysis of a wing box Structural behavior of aircraft IPUC001-CARCARÁwing Layston Ferroni Soares, Estêvão Guimarães Lapa, Pedro Américo Almeida Magalhães Junior, Bruno Daniel Pignolati Abstract The structural analysis is an important tool that allows the research for weight reduction, the choose of the best materials and to satisfy specifications and requirements. In an aircraft’s design, several analyzes are made to prove that this aircraft will stand the set of maneuvers that it was designed to accomplish. This work will consider the preliminar project of an aircraft seeking to check the behavior of the wing under certain loading conditions in the flight envelope.To get to this load set, it has been done all the process of specification of an aircraft, such as mission definition, calculation of weight and c.g. envelope, definition of the geometric characteristics of the aircraft, the airfoil choice, preliminary performance equations, aerodynamic coefficients and the aircraft’s balancing for the equilibrium condition, but such things will not be considered in this article. For the structural analysis of the wing will be considered an arbitrary flight condition, disregarding the effect of gusts loads. With the acquisition of the items mentioned, the main forces acting on the wing structure and their equations will be calculated. The use of finite element method will enable the application of loads obtained just as the development of a method of calculation, along with the construction of a three-dimensional model that represents a chosen condition.
    [Show full text]
  • Tailored Wingbox Structures Through Additive Manufacturing: a Summary of Ongoing Research at NASA Larc
    Tailored Wingbox Structures through Additive Manufacturing: a Summary of Ongoing Research at NASA LaRC Bret. K. Stanford and Karen M. B. Taminger NASA Langley Research Center, Hampton, VA USA [email protected], [email protected] ABSTRACT The use of wingbox structural design for improved performance (i.e., fuel burn reduction) of subsonic transports is driven by two trends: reduced structural weight and increased wingspan. These two trends are in direct competition, as the increased span will exacerbate the structural reaction to aerodynamic loading, and the reduced structural weight will nominally weaken the aircraft’s ability to handle this response. Novel structural configurations, enabled by recent improvements in manufacturing, may be critical toward bridging this gap. This paper summarizes pertinent activities at the NASA Langley Research Center in terms of additive manufacturing of metallic wing structures and substructures. Numerical design optimization activities are summarized as well, in order to understand where on a wingbox an additively-manufactured part may be useful and the way in which that part beneficially impacts the flight physics. The paper concludes with a discussion of how these two research paths may be better married in order to fully integrate both the benefits and realistic limitations of additive manufacturing and numerical structural design. 1.0 INTRODUCTION A common goal across the aviation industry and aeronautics-centric government laboratories is for the next generations of subsonic transport aircraft to attain significant reductions in fuel burn, emissions, and noise pollution, relative to the current fleet of aircraft. These ambitious goals will likely only be realized with a sustained focus and investment in new numerical design tools, experimental testing procedures, and manufacturing processes, as applied to all components of the aircraft: fuselage, wing, engine, etc.
    [Show full text]
  • Piper Pa-34 Wing Root Fairing Installation and Maintenance Manual
    Piper PA-34 Wing Root Fairing Issue Date: 7-4-87 STC No. SA1238GL Rev. D Manual No. 34WR-M Rev Date: 3-31-10 PIPER PA-34 WING ROOT FAIRING INSTALLATION AND MAINTENANCE MANUAL Aircraft Eligibility: Piper PA-34-200, PA-34-200T, PA-34-220T Knots 2U, Ltd. 709 Airport Road Burlington, WI 53105 www.knots2u.com Knots 2U, Ltd. 709 Airport Road Burlington, WI 53105 Ph 262.763.5100 Fax 262.763 5125 www.knots2u.com Page 1 of 7 Piper PA-34 Wing Root Fairing Issue Date: 7-4-87 STC No. SA1238GL Rev. D Manual No. 34WR-M Rev Date: 3-31-10 Revision Control Rev. Date Effect No. A 09/15/92 Added revision page, revised table of contents, and revised fairing installation procedures. B 06/01/97 Changed name and address. C 01/04/99 Moved revision to front cover, general cleanup, changed to #6 Stainless Steel hardware, installation procedure changes. D 07/01/09 ECO 0173 Knots 2U, Ltd. 709 Airport Road Burlington, WI 53105 Ph 262.763.5100 Fax 262.763 5125 www.knots2u.com Page 2 of 7 Piper PA-34 Wing Root Fairing Issue Date: 7-4-87 STC No. SA1238GL Rev. D Manual No. 34WR-M Rev Date: 3-31-10 Table of Contents Section Title Page Cover Page 1 Revision Control 2 Table of Contents 3 1.0 Right Side Installation P/N CWRR 4 1.1 Locating Holes in Fairing P/N CWRR 4 1.2 Drilling Holes in Fuselage and Fairing 4 1.3 Enlarging Mounting Holes in Fairing 4 1.4 Application of Foam Tape P/N 189-715 4 1.5 Mounting Fairing P/N CWRR 4 2.0 Left Side Installation P/N CWRL 4 3.0 Fairing Removal 4 4.0 Paper Work 5 5.0 Parts List 5 Detail 1 6 6.0 Maintenance / Instructions for Continued Airworthiness 7 Knots 2U, Ltd.
    [Show full text]