Diptera: Calliphoridae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Host Plant Records for Species Of
Life: The Excitement of Biology 4(4) 272 Geometric Morphometrics Sexual Dimorphism in Three Forensically- Important Species of Blow Fly (Diptera: Calliphoridae)1 José Antonio Nuñez-Rodríguez2 and Jonathan Liria3 Abstract: Forensic entomologists use adult and immature (larvae) insect specimens for estimating the minimum postmortem interval. Traditionally, this insect identification uses external morphology and/or molecular techniques. Additional tools like Geometric Morphometrics (GM) based on wing shape, could be used as a complement for traditional taxonomic species recognition. Recently, evolutionary studies have been focused on the phenotypic quantification for Sexual Shape Dimorphism (SShD). However, in forensically important species of blow flies, sexual variation studies are scarce. For this reason, GM was used to describe wing sexual dimorphism (size and shape) in three Calliphoridae species. Significant differences in wing size between females and males were found; the wing females were larger than those of males. The SShD variation occurs at the intersection between the radius R1 and wing margin, the intersection between the radius R2+3 and wing margin, the intersection between anal vein and CuA1, the intersection between media and radial-medial, and the intersection between the radius R4+5 and transversal radio-medial. Our study represents a contribution for SShD description in three blowfly species of forensic importance, and the morphometrics results corroborate the relevance for taxonomic purposes. We also suggest future investigations that correlated shape and size in sexual dimorphism with environmental factors such as substrate type, and laboratory/sylvatic populations, among others. Key Words: Geometric morphometric sexual dimorphism, wing, shape, size, Diptera, Calliphoridae, Chrysomyinae, Lucilinae Introduction In determinig the minimum postmortem interval (PMI), forensic entomologists use blowflies (Diptera: Calliphoridae) and other insects associated with body corposes (Bonacci et al. -
A Global Study of Forensically Significant Calliphorids: Implications for Identification
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) A global study of forensically significant calliphorids: Implications for identification M.L. Harveya, S. Gaudieria, M.H. Villet and I.R. Dadoura Abstract A proliferation of molecular studies of the forensically significant Calliphoridae in the last decade has seen molecule-based identification of immature and damaged specimens become a routine complement to traditional morphological identification as a preliminary to the accurate estimation of post-mortem intervals (PMI), which depends on the use of species-specific developmental data. Published molecular studies have tended to focus on generating data for geographically localised communities of species of importance, which has limited the consideration of intraspecific variation in species of global distribution. This study used phylogenetic analysis to assess the species status of 27 forensically important calliphorid species based on 1167 base pairs of the COI gene of 119 specimens from 22 countries, and confirmed the utility of the COI gene in identifying most species. The species Lucilia cuprina, Chrysomya megacephala, Ch. saffranea, Ch. albifrontalis and Calliphora stygia were unable to be monophyletically resolved based on these data. Identification of phylogenetically young species will require a faster-evolving molecular marker, but most species could be unambiguously characterised by sampling relatively few conspecific individuals if they were from distant localities. Intraspecific geographical variation was observed within Ch. rufifacies and L. cuprina, and is discussed with reference to unrecognised species. 1. Introduction The advent of DNA-based identification techniques for use in forensic entomology in 1994 [1] saw the beginning of a proliferation of molecular studies into the forensically important Calliphoridae. -
Life-History Traits of Chrysomya Rufifacies (Macquart) (Diptera
LIFE-HISTORY TRAITS OF CHRYSOMYA RUFIFACIES (MACQUART) (DIPTERA: CALLIPHORIDAE) AND ITS ASSOCIATED NON-CONSUMPTIVE EFFECTS ON COCHLIOMYIA MACELLARIA (FABRICIUS) (DIPTERA: CALLIPHORIDAE) BEHAVIOR AND DEVELOPMENT A Dissertation by MICAH FLORES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Jeffery K. Tomberlin Committee Members, S. Bradleigh Vinson Aaron M. Tarone Michael Longnecker Head of Department, David Ragsdale August 2013 Major Subject: Entomology Copyright 2013 Micah Flores ABSTRACT Blow fly (Diptera: Calliphoridae) interactions in decomposition ecology are well studied; however, the non-consumptive effects (NCE) of predators on the behavior and development of prey species have yet to be examined. The effects of these interactions and the resulting cascades in the ecosystem dynamics are important for species conservation and community structures. The resulting effects can impact the time of colonization (TOC) of remains for use in minimum post-mortem interval (mPMI) estimations. The development of the predacious blow fly, Chrysomya rufifacies (Macquart) was examined and determined to be sensitive to muscle type reared on, and not temperatures exposed to. Development time is important in forensic investigations utilizing entomological evidence to help establish a mPMI. Validation of the laboratory- based development data was done through blind TOC calculations and comparisons with known TOC times to assess errors. A range of errors was observed, depending on the stage of development of the collected flies, for all methods tested with no one method providing the most accurate estimation. The NCE of the predator blow fly on prey blow fly, Cochliomyia macellaria (Fabricius) behavior and development were observed in the laboratory. -
Hairy Maggot Blow Fly, Chrysomya Rufifacies (Macquart)1 J
EENY-023 Hairy Maggot Blow Fly, Chrysomya rufifacies (Macquart)1 J. H. Byrd2 Introduction hardened shell which looks similar to a rat dropping or a cockroach egg case. Insects in the family Calliphoridae are generally referred to as blow flies or bottle flies. Blow flies can be found in almost every terrestrial habitat and are found in association Life Cycle with humans throughout the world. In 1980 the immigrant species Chrysomya rufifacies was first recovered in the continental United States. This species is expected to increase its range in the United States. Distribution This species is now established in southern California, Arizona, Texas, Louisiana, and Florida. It is also found throughout Central America, Japan, India, and the remain- der of the Old World. Description Adults (Figure 1) are robust flies metallic green in color Figure 1. Adult hairy maggot blow fly, Chrysomya rufifacies (Macquart) with a distinct blue hue when viewed under bright sunlit Credits: James Castner, University of Florida conditions. The posterior margins of the abdominal tergites are a brilliant blue. The fly life cycle includes four life stages: egg, larva, pupa, and adult. The eggs are approximately 1 mm long and are The larvae are known as hairy maggots. They received laid in a loose mass of 50 to 200 eggs. Group oviposition this name because each body segment possesses a median by several females results in masses of thousands of eggs row of fleshy tubercles that give the fly a slightly hairy that may completely cover a decomposing carcass. The appearance although it does not possess any true hairs. -
And Chrysomya Rufifacies (Diptera: Calliphoridae) Author(S): Sonja Lise Swiger, Jerome A
Laboratory Colonization of the Blow Flies, Chrysomya Megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae) Author(s): Sonja Lise Swiger, Jerome A. Hogsette, and Jerry F. Butler Source: Journal of Economic Entomology, 107(5):1780-1784. 2014. Published By: Entomological Society of America URL: http://www.bioone.org/doi/full/10.1603/EC14146 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ECOLOGY AND BEHAVIOR Laboratory Colonization of the Blow Flies, Chrysomya megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae) 1,2,3 4 1 SONJA LISE SWIGER, JEROME A. HOGSETTE, AND JERRY F. BUTLER J. Econ. Entomol. 107(5): 1780Ð1784 (2014); DOI: http://dx.doi.org/10.1603/EC14146 ABSTRACT Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart) were colonized so that larval growth rates could be compared. Colonies were also established to provide insight into the protein needs of adult C. -
Terry Whitworth 3707 96Th ST E, Tacoma, WA 98446
Terry Whitworth 3707 96th ST E, Tacoma, WA 98446 Washington State University E-mail: [email protected] or [email protected] Published in Proceedings of the Entomological Society of Washington Vol. 108 (3), 2006, pp 689–725 Websites blowflies.net and birdblowfly.com KEYS TO THE GENERA AND SPECIES OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) OF AMERICA, NORTH OF MEXICO UPDATES AND EDITS AS OF SPRING 2017 Table of Contents Abstract .......................................................................................................................... 3 Introduction .................................................................................................................... 3 Materials and Methods ................................................................................................... 5 Separating families ....................................................................................................... 10 Key to subfamilies and genera of Calliphoridae ........................................................... 13 See Table 1 for page number for each species Table 1. Species in order they are discussed and comparison of names used in the current paper with names used by Hall (1948). Whitworth (2006) Hall (1948) Page Number Calliphorinae (18 species) .......................................................................................... 16 Bellardia bayeri Onesia townsendi ................................................... 18 Bellardia vulgaris Onesia bisetosa ..................................................... -
FLY, Chrysomya Bezziana (DIPTERA: CALLIPHORIDAE) COLLECTED from HUMAN WOUNDS
-19- USE OF DEVELOPMENT DATA TO ESTIMATE COLONIZATION TIME OF THE MYIASIS-CAUSING FLY, chrysomya bezziana (DIPTERA: CALLIPHORIDAE) COLLECTED FROM HUMAN WOUNDS Bambaradeniya Y.T.B.1, Karunarathne W.A.I.P.*1, Goonerathne I.2, Kotakadeniya R.B.3, Tomberlin J.K.4 1Department of Zoology, Faculty of Science, 2Department of Forensic Medicine, 3Department of Surgery, Faculty of Medicine, University of Peradeniya, Sri Lanka & 4Department of Entomology, Texas A & M University, College Station, Texas, USA ABSTRACT Forensic entomological techniques are environment, based on the time scale highly accepted for forensic investigations calculated from above method. all over the world, especially to estimate the time of colonization (TOC) as related to the Key words: Forensic entomology, time of postmortem interval (PMI) of human or colonization, accumulated degree day, other vertebrate remains as well as with myiasis, Chrysomya bezziana cases of neglect or abuse. Here, the accumulated degree days (ADD) method Corresponding author: [email protected] was used to calculate the TOC as related to three cases of myiasis associated with individuals admitted to the teaching hospital, Peradeniya during 2016. INTRODUCTION Chrysomya bezziana was recorded as the responsible species for all three cases. Forensic entomology is the application of Chrysomya bezziana is an obligatory arthropod-related material as evidence in myiasis-causing fly species commonly criminal investigations1. Entomological infesting human and farm animals mainly in evidence can be used to resolve three major tropical and subtropical countries. questions. Such material can be used to According to the present study, time of determine when, how and where a particular colonization of wounds by C. -
First Record of Chrysomya Rufifacies (Macquart) (Diptera, Calliphoridae) from Brazil
SHORT COMMUNICATION First record of Chrysomya rufifacies (Macquart) (Diptera, Calliphoridae) from Brazil José O. de Almeida Silva1,3, Fernando da S. Carvalho-Filho1,4, Maria C. Esposito1 & Geniana A. Reis2 1Laboratório de Ecologia de Invertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará – UFPA, Rua Augusto Corrêa, s/n, Guamá, Caixa Postal: 8607, 66074–150 Belém-PA, Brasil. [email protected]; [email protected]; [email protected] 2Laboratório de Estudos dos Invertebrados, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão – UEMA, Praça Duque de Caxias, s/n, Morro do Alecrim, 65604–380 Caxias-MA, Brasil. [email protected] 3Bolsista CAPES (Mestrado), Programa de Pós-Graduação em Zoologia – UFPA/MPEG 4Bolsista do CNPq (Doutorado), Programa de Pós-Graduação em Zoologia – UFPA/MPEG ABSTRACT. First record of Chrysomya rufifacies (Macquart) (Diptera, Calliphoridae) from Brazil. In addition to its native fauna, the Neotropical region is known to be inhabited by four introduced species of blow flies of the genus Chrysomya. Up until now, only three of these species have been recorded in Brazil – Chrysomya albiceps (Wiedemann), Chrysomya megacephala (Fabricius), and Chrysomya putoria (Wiedemann). In South America, C. rufifacies (Macquart) has only been reported from Argentina and Colom- bia. This study records C. rufifacies from Brazil for the first time. The specimens were collected in an area of cerrado (savanna-like vegetation) in the municipality of Caxias in state of Maranhão, and were attracted by pig carcasses. KEYWORDS. Blow fly; cerrado biome; exotic species; Northern Brazil; Oestroidea. RESUMO. Primeiro registro de Chrysomya rufifacies (Macquart) (Diptera, Calliphoridae) para o Brasil. A região Neotropical compreende além da fauna nativa, quatro espécies de moscas varejeiras exóticas do gênero Chrysomya. -
Testing the Accuracy of Vegetation-Based Ecoregions for Predicting the Species Composition of Blow Flies (Diptera: Calliphoridae)
Journal of Insect Science, (2021) 21(1): 6; 1–9 doi: 10.1093/jisesa/ieaa144 Research Testing the Accuracy of Vegetation-Based Ecoregions for Predicting the Species Composition of Blow Flies (Diptera: Calliphoridae) K. Ketzaly Munguía-Ortega,1 Eulogio López-Reyes,1 and F. Sara Ceccarelli2,3, 1Museo de Artrópodos, Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico, 2Museo de Artrópodos, Departamento de Biología de la Conservación, CONACYT- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico, and 3Corresponding author, e-mail: [email protected] Subject Editor: Philippe Usseglio-Polatera Received 25 June 2020; Editorial decision 5 December 2020 Abstract To properly define ecoregions, specific criteria such as geology, climate, or species composition (e.g., the presence of endemic species) must be taken into account to understand distribution patterns and resolve ecological biogeography questions. Since the studies on insects in Baja California are scarce, and no fine-scale ecoregions based on the region’s entomofauna is available, this study was designed to test whether the ecoregions based on vegetation can be used for insects, such as Calliphoridae. Nine collecting sites distributed along five ecoregions were selected, between latitudes 29.6° and 32.0°N. In each site, three baited traps were used to collect blow flies from August 2017 to June 2019 during summer, winter, and spring. A total of 30,307 individuals of blow flies distributed in six genera and 13 species were collected. The most abundant species were Cochliomyia macellaria (Fabricius), Phormia regina (Meigen), and Chrysomya rufifacies (Macquart). -
Screwworm Myiasis
Screwworm Importance Screwworms are fly larvae (maggots) that feed on living flesh. These parasites Myiasis infest all mammals and, rarely, birds. Two different species of flies cause screwworm myiasis: New World screwworms (Cochliomyia hominivorax) occur in the western hemisphere, and Old World screwworms (Chrysomya bezziana) are found in the eastern hemisphere. However, the climatic requirements for these two species are similar, and they could become established in either hemisphere. New World and Old World screwworms have adapted to fill the same niche, and their life cycles are Last Updated: October 3, 2007 nearly identical. Female flies lay their eggs at the edges of wounds or on mucous membranes. When they hatch, the larvae enter the body, grow and feed, progressively enlarging the wound. Eventually, they drop to the ground to pupate and develop into adults. Screwworms can enter wounds as small as a tick bite. Left untreated, infestations can be fatal. Screwworms have been eradicated from some parts of the world, including the southern United States, but infested animals are occasionally imported into screwworm-free countries. These infestations must be recognized and treated promptly; if the larvae are allowed to leave the wound, they can introduce these parasites into the area. Etiology New World screwworm myiasis is caused by the larvae of Cochliomyia hominivorax (Coquerel). Old World screwworm myiasis is caused by the larvae of Chrysomya bezziana (Villeneuve). Both species are members of the subfamily Chrysomyinae in the family Calliphoridae (blowflies). Species Affected All warm-blooded animals can be infested by screwworms; however, these parasites are common in mammals and rare in birds. -
Oriental Blow Fly
Livestock Management Insect Pests Sept. 2003, LM-10.6 Oriental Blow Fly Michael W. DuPonte1 and Linda Burnham Larish2 1CTAHR Department of Human Nutrition, Food and Animal Sciences, 2Hawaii Department of Health Chrysomya megacephala Fabricius Origin The oriental blow fly was first collected in Kona, Ha waii, by Grimshaw in 1892 and is now found through out the Hawaiian islands up to about 4000 feet eleva tion. Public health concern The oriental blow fly carries intestinal pathogens and will invade diseased tissue. It causes public complaints when large numbers emerge from animal carcasses or garbage. Larval age is used in forensic entomology to determine the postmortem interval. Hosts Feed on human and livestock excreta, fish, meats, or Control ganic garbage, anything sweet. and dead carcasses Poultry operations need to incinerate or compost dead birds and dispose of broken eggs before flies breed. Livestock concern Hog farms need to cook garbage and dispose of raw slop. Can become a nuisance at poultry facilities due to dead Homeowners and restaurants should remove garbage at birds and broken eggs. least twice a week and keep the area clean Hog operations generate blow flies from wet garbage. Insecticidal sprays can be used to control adults on sur Description faces where they land 3 Large fly, over ⁄8 inches long. Adults are bright metallic green with black margins on References Hardy, D. Elmo. 1981. Insects of Hawaii, vol. 14 Diptera: Cyclop the second and third abdominal segments. phapha IV. Univ. Hawaii Press, Honolulu. pp. 356–359. Adult flies have large red eyes, almost touching in the Pereira, Marcelo de Campos. -
Success of Nitenpyram in the Treatment Of
CASE REPORT Success of nitenpyram in the treatment of ocular myiasis in the orbital cavity of a dog – case report p-ISSN 0100-2430 Sucesso do nitempiram no tratamento de miíase ocular em e-ISSN 2527-2179 cavidade orbital em cão – relato de caso Fernando Rocha Miranda1 , Renan Bernardes Tavares2 , Ciro Eugenio da Silva de Oliveira2 , Emily Andressa Santos1 , Diefrey Ribeiro Campos3 , Fabio Barbour Scott4 and Júlio Israel Fernandes5 1Veterinary. Laboratório de Quimioterapia Experimental em Parasitologia Veterinária – LQEPV, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 2Veterinary Medicine Graduate Student. Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 3Veterinary, Dr. Programa de Pós-graduação em Ciências Veterinárias – PPGMV, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 4Veterinary, Dr. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 5Veterinary, Dr. Departamento de Medicina e Cirurgia Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil Abstract The aim of this study is to report the efficacy of nitenpyram against Cochiliomiyia hominivorax larvae in How to cite: Miranda F.R., Tavares R.B., Oliveira ocular myiasis of a naturally infested dog. A female Beagle with ocular myiasis was attended. After care and C.E.S., Santos E.A., Campos D.R., Scott F.B., Fernandes J.I. (2020). Success of nitenpyram clinical examination, the involvement of the entire ocular and periocular region was found. The animal was in the treatment of ocular myiasis in the treated orally with a dose of 4.7 mg/kg of nitenpyram together with analgesic medication.