(Linoleate/Oleate) Stimulates Prodifferentiation Gene Expression to Restore the Epidermal Barrier and Improve Skin Hydration Krzysztof Bojanowski1,2, William R

Total Page:16

File Type:pdf, Size:1020Kb

(Linoleate/Oleate) Stimulates Prodifferentiation Gene Expression to Restore the Epidermal Barrier and Improve Skin Hydration Krzysztof Bojanowski1,2, William R ORIGINAL ARTICLE Isosorbide Di-(Linoleate/Oleate) Stimulates Prodifferentiation Gene Expression to Restore the Epidermal Barrier and Improve Skin Hydration Krzysztof Bojanowski1,2, William R. Swindell3, Shyla Cantor4 and Ratan K. Chaudhuri2,5 The breakdown of the epidermal barrier and consequent loss of skin hydration is a feature of skin aging and eczematous dermatitis. Few treatments, however, resolve these underlying processes to provide full symp- tomatic relief. In this study, we evaluated isosorbide di-(linoleate/oleate) (IDL), which was generated by esterifying isosorbide with sunflower fatty acids. Topical effects of IDL in skin were compared with those of ethyl linoleate/oleate, which has previously been shown to improve skin barrier function. Both IDL and ethyl linoleate/oleate downregulated inflammatory gene expression, but IDL more effectively upregulated the expression of genes associated with keratinocyte differentiation (e.g., KRT1, GRHL2, SPRR4). Consistent with this, IDL increased the abundance of epidermal barrier proteins (FLG and involucrin) and prevented cytokine- mediated stratum corneum degradation. IDL also downregulated the expression of unhealthy skin signature genes linked to the loss of epidermal homeostasis and uniquely repressed an IFN-inducible coexpression module activated in multiple skin diseases, including psoriasis. In a double-blind, placebo-controlled trial enrolling females with dry skin, 2% IDL lotion applied over 2 weeks significantly improved skin hydration and decreased transepidermal water loss (NCT04253704). These results demonstrate mechanisms by which IDL improves skin hydration and epidermal barrier function, supporting IDL as an effective intervention for the treatment of xerotic pruritic skin. Journal of Investigative Dermatology (2021) 141, 1416e1427; doi:10.1016/j.jid.2020.09.029 INTRODUCTION treatments and may be combined with topical corticosteroids Skin barrier defects may occur with aging or because of or oral antihistamines (Anderson and Dinulos, 2009; Elias chronic inflammatory skin diseases. This loss of barrier et al., 2019; Nolan and Marmur, 2012). Although formerly function can be accelerated by metabolic disorders (Aoki and viewed as inert and providing only a passive occlusive effect Murase, 2019; Okano et al., 2016; Yosipovitch et al., 2007) (Nygaard et al., 2017), more recent evidence suggests that or seasonal climate variation (Engebretsen et al., 2018) and petrolatum triggers the expression of genes encoding anti- may lead to increased systemic inflammation (Hu et al., microbial and epidermal barrier proteins (Czarnowicki et al., 2017). Epidermal barrier defects are also part of the patho- 2016). This has suggested new possibilities for next- genesis of atopic dermatitis, in which barrier defects com- generation occlusive treatments that alter skin physiology to bined with inflammation and environmental factors trigger restore skin’s endogenous barrier strength. symptoms, including intense pruritus that may lead to Phytochemicals from plant extracts can provide excellent lichenification and secondary infections (David Boothe et al., source material to develop novel occlusive agents with 2017). Symptomatic relief of dry skin (xerosis) is thus a barrier-building bioactivity. Sunflower oil, in particular, is common problem that must be addressed to prevent com- commonly used for topical applications because of its high plications. Petrolatum-based moisturizers are first-line linoleic acid (60e70%) content relative to oleic acid (20e30%) (Vaughn et al., 2018). Linoleic acid is an essential 1Sunny BioDiscovery, Santa Paula, California, USA; 2Symbionyx fatty acid for barrier recovery (Prottey et al., 1976), which can Pharmaceuticals, Boonton, New Jersey, USA; 3Department of Internal be generated from ethyl linoleate as a stable precursor Medicine, The Jewish Hospital, Cincinnati, Ohio, USA; 4Cantor Research (Hungund et al., 1995). In contrast, oleic acid disrupts the 5 Laboratories, Blauvelt, New York, USA; and Sytheon, Boonton, New skin barrier to enhance permeability (Mack Correa et al., Jersey, USA 2014). Sunflower oil therefore possesses a favorable bal- Correspondence: William R. Swindell, Department of Internal Medicine, The Jewish Hospital - Mercy Health, 4777 E. Galbraith Road, Cincinnati, Ohio ance of ingredients to improve hydration and stratum cor- 45236, USA. E-mail: [email protected] neum integrity in adults (Danby et al., 2013) and has been Abbreviations: CTL, control; DEM, differentially expressed module; EL, ethyl used to treat preterm infants with developmentally compro- linoleate/oleate; FDR, false discovery rate; IDL, isosorbide di-(linoleate/ mised barrier function (Darmstadt et al., 2002). Topical oleate); KC, keratinocyte; TEWL, transepidermal water loss; USS, unhealthy application of linoleic aciderich sunflower oil also reverses skin signature scaling in cutaneous essential fatty acid deficiency (Prottey Received 7 February 2020; revised 16 September 2020; accepted 20 September 2020; accepted manuscript published online 9 November 2020; et al., 1975). Moreover, there is a ceramide subgroup that corrected proof published online 24 December 2020 contains linoleic acid esterified to the omega carbon of 1416 Journal of Investigative Dermatology (2021), Volume 141 ª 2021 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. K Bojanowski et al. Isosorbide Di-(Linoleate/Oleate) Restores Barrier omega-hydroxy fatty acids, which are found solely in the immunity and leukocyte proliferation (Figure 1g and i) and epidermis and form membrane sheets crucial for skin barrier decreased the expression of genes associated with cell function (Rabionet et al., 2014). Linoleic acid and/or EL thus adhesion, skin development, and cell-cell adhesion have a wide range of skin care benefits, with evidence sup- (Figure 1h and j). Because eukaryotic gene expression is porting anti-inflammatory effects (Zhao et al., 2005) and ef- known to be modular (Dong and Horvath, 2007; Wang et al., ficacy for the treatment of acne (Charakida et al., 2007), 2008), we evaluated the effects of EL on the expression of 235 wounds (Pereira et al., 2008), and hyperpigmentation (Ko and predefined modules, each containing genes coexpressed in Kim Cho, 2018). human epidermis (Swindell et al., 2013)(Supplementary We previously demonstrated that isosorbide dicaprylate, Figure S2a). A total of 22 differentially expressed modules obtained by reacting isosorbide with octanoic (caprylic) acid, (DEMs) were identified (false discovery rate [FDR] < 0.05; 10 is effective for improving the epidermal barrier to promote EL-decreased, 12 EL-increased; Supplementary Figure S2b skin hydration (Chaudhuri and Bojanowski, 2017). However, and d). The DEM most strongly downregulated by EL was although isosorbide dicaprylate increased the expression of EPHA-40 (FDR ¼ 3eÀ06; Supplementary Figure S2bed), some keratinocyte (KC) differentiation proteins (e.g., AQP3, which included genes associated with epidermal differenti- CD44), it did not upregulate FLG mRNA or protein ation (e.g., GRHL1, DSC1, DSG1; Supplementary (Chaudhuri and Bojanowski, 2017). We therefore recently Figure S2e). The DEM most strongly upregulated by EL was developed a different isosorbide diester compound, iso- MIF-44 (FDR ¼ 4.58eÀ04; Supplementary Figure S2bed). An sorbide di-(linoleate/oleate) (IDL), synthesized by esterifying IFN-induced DEM containing antiviral genes (STAT1-57), isosorbide (obtained from corn) with fatty acids from sun- previously shown to be activated in nonmelanoma cancers flower seed oil. The use of sunflower seed oil in this context, and psoriasis lesions (Swindell et al., 2013), was upregulated rather than semipurified linoleic acid, was advantageous by EL (FDR ¼ 0.015; Supplementary Figure S2a and b). because linoleic acid undergoes air oxidation and thus lacks the stability desired for esterification (Yang et al., 2009). IDL IDL upregulates genes associated with differentiation and keratinization but downregulates genes linked to is a lipophilic compound that can be formulated into stable inflammation and adaptive immunity emulsions, hydro-lipid dispersions, and anhydrous systems. DNA microarrays were next used to evaluate gene expression As a recently developed compound, however, potential differences between EpiDermFT cultures treated with IDL (50 benefits in skin have not been well explored and mechanisms mg/ml) and those treated with 0.1% DMSO (CTL). Changes in of action with respect to KC differentiation and barrier for- gene expression were stronger with IDL than with EL treat- mation have not been demonstrated. ment (Supplementary Figure S1j). We identified 316 IDL- This study evaluated the molecular and cellular effects of increased genes (P < 0.05; 164 IDL-increased, 152 IDL and its clinical efficacy in human subjects with xerotic IDL-decreased) from comparisons to the CTL treatment skin. We used DNA microarrays to identify gene expression (Supplementary Figure S1i). Genes most strongly upregulated responses to IDL in a multilayered in vitro model of human by IDL included C4orf19, PAX9, and KLK12 (Figure 2b, c, dermis and epidermis (EpiDermFT; MatTek Life Sciences, and e), whereas genes most strongly downregulated by IDL Ashland, MA), and we compared these responses to those included PCDH20, GSTA2, and BPIFB4 (Figure 2b, d, and f). observed in cultures treated with ethyl linoleate/oleate (EL) IDL upregulated genes associated with epidermal differenti- (approximately 70% ethyl linoleate
Recommended publications
  • The Complete Genome Sequence of Mycobacterium Avium Subspecies Paratuberculosis
    The complete genome sequence of Mycobacterium avium subspecies paratuberculosis Lingling Li*†‡, John P. Bannantine‡§, Qing Zhang*†‡, Alongkorn Amonsin*†‡, Barbara J. May*†, David Alt§, Nilanjana Banerji†¶, Sagarika Kanjilal†‡¶, and Vivek Kapur*†‡ʈ *Department of Microbiology, †Biomedical Genomics Center, and ¶Department of Medicine, University of Minnesota, St. Paul, MN 55108; and §National Animal Disease Center, U.S. Department of Agriculture–Agriculture Research Service, Ames, IA 50010 Communicated by Harley W. Moon, Iowa State University, Ames, IA, July 13, 2005 (received for review March 18, 2005) We describe here the complete genome sequence of a common Map and Mav (11–13). Therefore, it is widely recognized that the clone of Mycobacterium avium subspecies paratuberculosis (Map) development of rapid, sensitive, and specific assays to identify strain K-10, the causative agent of Johne’s disease in cattle and infected animals is essential to the formulation of rational other ruminants. The K-10 genome is a single circular chromosome strategies to control the spread of Map. of 4,829,781 base pairs and encodes 4,350 predicted ORFs, 45 As a first step toward elucidating the molecular basis of Map’s tRNAs, and one rRNA operon. In silico analysis identified >3,000 physiology and virulence, and providing a foundation for the genes with homologs to the human pathogen, M. tuberculosis development of the next generation of Map diagnostic tests and (Mtb), and 161 unique genomic regions that encode 39 previously vaccines, we report the complete genome sequence of a common unknown Map genes. Analysis of nucleotide substitution rates clone of Map, strain K-10. with Mtb homologs suggest overall strong selection for a vast majority of these shared mycobacterial genes, with only 68 ORFs Materials and Methods with a synonymous to nonsynonymous substitution ratio of >2.
    [Show full text]
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
    [Show full text]
  • Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Ecliptae Herba on Hepatocellular Carcinoma
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 5591402, 17 pages https://doi.org/10.1155/2021/5591402 Research Article Pharmacological Mechanisms Underlying the Hepatoprotective Effects of Ecliptae herba on Hepatocellular Carcinoma Botao Pan ,1 Wenxiu Pan ,2 Zheng Lu ,3 and Chenglai Xia 1,4 1Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China 2Department of Laboratory, Fifth People’s Hospital of Foshan, Foshan 528000, China 3Wuzhou Maternal and Child Health-Care Hospital, Wuzhou 543000, China 4School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China Correspondence should be addressed to Zheng Lu; [email protected] and Chenglai Xia; [email protected] Received 30 January 2021; Revised 31 May 2021; Accepted 3 July 2021; Published 16 July 2021 Academic Editor: Hongcai Shang Copyright © 2021 Botao Pan et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. -e number of hepatocellular carcinoma (HCC) cases worldwide has increased significantly. As a traditional Chinese medicine (TCM) with a long history, Ecliptae herba (EH) has been widely used in HCC patients in China, but its hepatoprotective mechanism is still unclear. Methods. In this study, we applied a network pharmacology-based strategy and experimental ver- ification to systematically unravel the underlying mechanisms of EH against HCC. First, six active ingredients of EH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) by the ADME method. Subsequently, 52 potential targets of 6 active ingredients acting on HCC were screened from various databases, including TCMSP, DGIdb, SwissTargetPrediction, CTD, and GeneCards.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Supplementary Figures and Tables
    SUPPLEMENTARY DATA Supplementary Figure 1. Isolation and culture of endothelial cells from surgical specimens of FVM. (A) Representative pre-surgical fundus photograph of a right eye exhibiting a FVM encroaching on the optic nerve (dashed line) causing tractional retinal detachment with blot hemorrhages throughout retina (arrow heads). (B) Magnetic beads (arrows) allow for separation and culturing of enriched cell populations from surgical specimens (scale bar = 100 μm). (C) Cultures of isolated cells stained positively for CD31 representing a successfully isolated enriched population (scale bar = 40 μm). ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Figure 2. Efficient siRNA knockdown of RUNX1 expression and function demonstrated by qRT-PCR, Western Blot, and scratch assay. (A) RUNX1 siRNA induced a 60% reduction of RUNX1 expression measured by qRT-PCR 48 hrs post-transfection whereas expression of RUNX2 and RUNX3, the two other mammalian RUNX orthologues, showed no significant changes, indicating specificity of our siRNA. Functional inhibition of Runx1 signaling was demonstrated by a 330% increase in insulin-like growth factor binding protein-3 (IGFBP3) RNA expression level, a known target of RUNX1 inhibition. Western blot demonstrated similar reduction in protein levels. (B) siRNA- 2’s effect on RUNX1 was validated by qRT-PCR and western blot, demonstrating a similar reduction in both RNA and protein. Scratch assay demonstrates functional inhibition of RUNX1 by siRNA-2. ns: not significant, * p < 0.05, *** p < 0.001 ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Table 1.
    [Show full text]
  • A DNA Methylation Biomarker of Alcohol Consumption
    OPEN Molecular Psychiatry (2018) 23, 422–433 www.nature.com/mp ORIGINAL ARTICLE A DNA methylation biomarker of alcohol consumption C Liu1,2,3,55, RE Marioni4,5,6,55, ÅK Hedman7,55, L Pfeiffer8,9,55, P-C Tsai10,55, LM Reynolds11,55, AC Just12,55, Q Duan13,55, CG Boer14,55, T Tanaka15,55, CE Elks16, S Aslibekyan17, JA Brody18, B Kühnel8,9, C Herder19,20, LM Almli21, D Zhi22, Y Wang23, T Huan1,2,CYao1,2, MM Mendelson1,2, R Joehanes1,2,24, L Liang25, S-A Love23, W Guan26, S Shah6,27, AF McRae6,27, A Kretschmer8,9, H Prokisch28,29, K Strauch30,31, A Peters8,9,32, PM Visscher4,6,27,NRWray6,27, X Guo33, KL Wiggins18, AK Smith21, EB Binder34, KJ Ressler35, MR Irvin17, DM Absher36, D Hernandez37, L Ferrucci15, S Bandinelli38, K Lohman11, J Ding39, L Trevisi40, S Gustafsson7, JH Sandling41,42, L Stolk14, AG Uitterlinden14,43,IYet10, JE Castillo-Fernandez10, TD Spector10, JD Schwartz44, P Vokonas45, L Lind46,YLi47, M Fornage48, DK Arnett49, NJ Wareham16, N Sotoodehnia18, KK Ong16, JBJ van Meurs14, KN Conneely50, AA Baccarelli51, IJ Deary4,52, JT Bell10, KE North23,56, Y Liu11,56, M Waldenberger8,9,56, SJ London53,56, E Ingelsson7,54,56 and D Levy1,2,56 The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal = 13 317; 54% women; mean age across cohorts 42–76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples.
    [Show full text]
  • The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis
    International Journal of Molecular Sciences Review The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis Xiaokun Zhou 1, Yiqiang Zhi 1, Jurui Yu 1 and Dan Xu 1,2,* 1 College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; [email protected] (X.Z.); [email protected] (Y.Z.); [email protected] (J.Y.) 2 Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China * Correspondence: [email protected]; Tel.: +86-17085937559 Received: 17 December 2019; Accepted: 26 February 2020; Published: 1 March 2020 Abstract: The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
    [Show full text]
  • Allwithnames.Pdf
    Erythrocytes take up oxygen and release carbon dioxide AL1A1 ADH6ADHXADH7 ADH1G ADH1B ADH4 AL1B1 Cyclin E associated events during G1/S transition FRS-mediated FGFR4 signaling ADH1A CP2E1CP2B6 CP2A6 CP2CJCP2C8 CP2AD CP2C9 CP2D6 Pyrimidine salvageKHK TRP channels AL1A3 CP2J2Fanconi Anemia Pathway AL1A2 I23O1KMO Synthesis of bile acids and bile HYESsalts via 27-hydroxycholesterol AADATKYNUT23O Cobalamin (Cbl, vitamin B12) transport and metabolism CP3A5 ARMS-mediated activation Syndecan interactionsCP3A4 CP1A2 Tryptophan catabolism PANK3PANK2 Abacavir metabolism PANK1 Advanced glycosylation endproduct receptor signaling KCNK3 KCNK9 Loss of ALDH2proteins required for interphase microtubule organization from the centrosome XAV939 inhibits tankyrase, stabilizing AXIN Phase 2 - plateau phase KCNK2 Orc1 removal from chromatin Mineralocorticoid biosynthesis S22A6 S22ABS22AC CP26A Truncations of AMER1 destabilize the destruction complex Cytosolic sensorsPurine ribonucleoside of pathogen-associated monophosphate DNA biosynthesis ST1E1 UMPSPYRD CholineCGAT1 catabolism TPST2ST1A1 Separation ofTPH1 Sister Chromatids Methionine INMTsalvage pathway Phase 4 - restingHPPD membrane potential Classical antibody-mediatedKCNJ4 complement activation Phase I - Functionalization of compounds KCNJ2 Cargo recognition for clathrin-mediatedBODG endocytosis ENTP3ENTP1 CP1B1 ADAL ENTP2 CD38 Costimulation by the CD28 family N-glycan trimming in the ER and Calnexin/Calreticulin cycle METK2TPMT BHMT1 PGH1 Metalloprotease DUBs Retrograde neurotrophin signalling DHSO Caspase-mediated
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • The Development of a Statistical Model to Study How the Deletion of PD-1 Promotes Anti-Tumor Immunity
    The Development of a Statistical Model to Study How the Deletion of PD-1 Promotes Anti-Tumor Immunity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diallo, Alos Burgess. 2021. The Development of a Statistical Model to Study How the Deletion of PD-1 Promotes Anti-Tumor Immunity. Master's thesis, Harvard University Division of Continuing Education. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367694 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Development of a Statistical Model to Study How the Deletion of PD-1 Promotes Anti-Tumor Immunity Alos Diallo A Thesis in the Field of Bioinformatics for the Degree of Master of Liberal Arts in Extension Studies Harvard University March 2021 1 2 Copyright 2021 [Alos Diallo] Abstract T-cells are an essential component to the immune system, but they do not act alone and are instead a component in the body’s immune system. PD-1 and its ligands PD-L1 and PD-L2 play an important role in the regulation of T-cells which are incredibly important to the treatment of cancer. Tumors have been able to hijack the PD-1 inhibitory pathway to evade our body’s immune response. PD-1 pathway blockade, therefore, can serve as an important approach for cancer immunotherapy.
    [Show full text]
  • Protein from Sulfolobus Shibatae Sohail A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery 1995 Oxford University Press Nucleic Acids Research, 1995, Vol. 23, No. 10 1775-1781 Cloning and functional analysis of the TATA binding protein from Sulfolobus shibatae Sohail A. Qureshi, Peter Baumann, Tracey Rowlands, Bernard Khoo and Stephen P. Jackson* Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1 QR, UK and Department of Zoology, Cambridge University, Cambridge, UK Received January 19, 1995; Revised and Accepted March 28, 1995 GenBank accession no. U2341 9 ABSTRACT Eucarya and Bacteria, relatively little work has been conducted on archaeal transcription systems. Over the past few years, Archaea (formerly archaebacteria) comprise a domain however, several lines of evidence have suggested that the of life that is phylogenetically distinct from both transcription systems of Archaea and Eucarya are fundamentally Eucarya and Bacteria. Here we report the cloning of a homologous. Although Archaea possess just one DNA-dependent gene from the Archaeon Sulfolobus shibatae that RNA polymerase, this enzyme consists of -12 subunits and is encodes a protein with strong homology to the TATA therefore similar in its structural complexity to eukaryotic nuclear binding protein (TBP) of eukaryotes. Sulfolobus RNA polymerases (4). In contrast, bacterial RNA polymerases shibatae TBP is, however, almost as diverged from other archaeal TBPs that have been cloned as it is from contain three core subunits (X, e and 'Y, and a tightly associated eukaryotic TBPs. DNA binding studies indicate that a factor (5). Immunochemical and sequence analyses have S.shibatae TBP recognizes TATA-like A-box sequences revealed that the two largest RNA polymerase subunits of that are present upstream of most archaeal genes.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]