Zelinka and Hartmann 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climate Models and Their Evaluation
8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G. -
Cumulus Microphysics and Climate Sensitivity
2376 JOURNAL OF CLIMATE VOLUME 18 Cumulus Microphysics and Climate Sensitivity ANTHONY D. DEL GENIO NASA Goddard Institute for Space Studies, New York, New York WILLIAM KOVARI Center for Climate Systems Research, Columbia University, New York, New York MAO-SUNG YAO SGT, Inc., Institute for Space Studies, New York, New York JEFFREY JONAS Center for Climate Systems Research, Columbia University, New York, New York (Manuscript received 24 May 2004, in final form 15 October 2004) ABSTRACT Precipitation processes in convective storms are potentially a major regulator of cloud feedback. An unresolved issue is how the partitioning of convective condensate between precipitation-size particles that fall out of updrafts and smaller particles that are detrained to form anvil clouds will change as the climate warms. Tropical Rainfall Measuring Mission (TRMM) observations of tropical oceanic convective storms indicate higher precipitation efficiency at warmer sea surface temperature (SST) but also suggest that cumulus anvil sizes, albedos, and ice water paths become insensitive to warming at high temperatures. International Satellite Cloud Climatology Project (ISCCP) data show that instantaneous cirrus and deep convective cloud fractions are positively correlated and increase with SST except at the highest tempera- tures, but are sensitive to variations in large-scale vertical velocity. A simple conceptual model based on a Marshall–Palmer drop size distribution, empirical terminal velocity–particle size relationships, and assumed cumulus updraft speeds reproduces the observed tendency for detrained condensate to approach a limiting value at high SST. These results suggest that the climatic behavior of observed tropical convective clouds is intermediate between the extremes required to support the thermostat and adaptive iris hypotheses. -
Climate Change: Addressing the Major Skeptic Arguments
Climate Change: Addressing the Major Skeptic Arguments September 2010 Whitepaper available online: http://www.dbcca.com/research Carbon Counter widget available for download at: www.Know-The-Number.com Research Team Authors Mary-Elena Carr, Ph.D. Kate Brash Associate Director Assistant Director Columbia Climate Center, Earth Institute Columbia Climate Center, Earth Institute Columbia University Columbia University Robert F. Anderson, Ph.D. Ewing-Lamont Research Professor Lamont-Doherty Earth Observatory Columbia University DB Climate Change Advisors – Climate Change Investment Research Mark Fulton Bruce M. Kahn, Ph.D. Managing Director Director Global Head of Climate Change Investment Research Senior Investment Analyst Nils Mellquist Emily Soong Vice President Associate Senior Research Analyst Jake Baker Lucy Cotter Associate Research Analyst 2 Climate Change: Addressing the Major Skeptic Arguments Editorial Mark Fulton Global Head of Climate Change Investment Research Addressing the Climate Change Skeptics The purpose of this paper is to examine the many claims and counter-claims being made in the public debate about climate change science. For most of this year, the volume of this debate has turned way up as the ‘skeptics’ launched a determined assault on the climate findings accepted by the overwhelming majority of the scientific community. Unfortunately, the increased noise has only made it harder for people to untangle the arguments and form their own opinions. This is problematic because the way the public’s views are shaped is critical to future political action on climate change. For investors in particular, the implications are huge. While there are many arguments in favor of clean energy, water and sustainable agriculture – for instance, energy security, economic growth, and job opportunities – we at DB Climate Change Advisors (DBCCA) have always said that the science is one essential foundation of the whole climate change investment thesis. -
A Prediction Market for Climate Outcomes
Florida State University College of Law Scholarship Repository Scholarly Publications 2011 A Prediction Market for Climate Outcomes Shi-Ling Hsu Florida State University College of Law Follow this and additional works at: https://ir.law.fsu.edu/articles Part of the Environmental Law Commons, Law and Politics Commons, Natural Resources Law Commons, and the Oil, Gas, and Mineral Law Commons Recommended Citation Shi-Ling Hsu, A Prediction Market for Climate Outcomes, 83 U. COLO. L. REV. 179 (2011), Available at: https://ir.law.fsu.edu/articles/497 This Article is brought to you for free and open access by Scholarship Repository. It has been accepted for inclusion in Scholarly Publications by an authorized administrator of Scholarship Repository. For more information, please contact [email protected]. A PREDICTION MARKET FOR CLIMATE OUTCOMES * SHI-LING HSU This Article proposes a way of introducing some organization and tractability in climate science, generating more widely credible evaluations of climate science, and imposing some discipline on the processing and interpretation of climate information. I propose a two-part policy instrument consisting of (1) a carbon tax that is indexed to a “basket” of climate outcomes, and (2) a cap-and- trade system of emissions permits that can be redeemed in the future in lieu of paying the carbon tax. The amount of the carbon tax in this proposal (per ton of CO2) would be set each year on the basis of some objective, non-manipulable climate indices, such as temperature and mean sea level, and also on the number of certain climate events, such as flood events or droughts, that occurred in the previous year (or some moving average of previous years). -
Cloud-Phase Climate Feedback and the Importance of Ice- Nucleating Particles Benjamin J
https://doi.org/10.5194/acp-2020-852 Preprint. Discussion started: 21 August 2020 c Author(s) 2020. CC BY 4.0 License. Opinion: Cloud-phase climate feedback and the importance of ice- nucleating particles Benjamin J. Murray1, Kenneth S. Carslaw1, Paul R. Field1,2 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United 5 Kingdom 2Met Office, Exeter EX1 3PB, United Kingdom Correspondence to: Benjamin J. Murray ([email protected]) Abstract. Shallow clouds covering vast areas of the world’s mid- and high-latitude oceans play a key role in dampening the global temperature rise associated with CO2. These clouds, which contain both ice and supercooled water, respond to a 10 warming world by transitioning to a state with more liquid water and a greater albedo, resulting in a negative ‘cloud-phase’ climate feedback component. Here we argue that the magnitude of the negative cloud-phase feedback component depends on the amount and nature of the small fraction of aerosol particles that can nucleate ice crystals. We propose that a concerted research effort is required to reduce substantial and important uncertainties related to the poorly understood sources, concentration, seasonal cycles and nature of these ice-nucleating particles (INPs) and their rudimentary treatment in climate 15 models. The topic is important because many climate models may have overestimated the magnitude of the cloud -phase feedback, and those with better representation of shallow oceanic clouds predict a substantially larger climate warming. We make the case that understanding the present-day INP population in shallow clouds in the cold-sector of cyclone systems is particularly critical for defining present-day cloud phase and therefore how the clouds respond to warming. -
ESD Reviews: Mechanisms, Evidence, and Impacts of Climate
https://doi.org/10.5194/esd-2020-16 Preprint. Discussion started: 21 April 2020 c Author(s) 2020. CC BY 4.0 License. ESD Reviews: mechanisms, evidence, and impacts of climate tipping elements Seaver Wang1, Zeke Hausfather1 1The Breakthrough Institute, Oakland, 94612, United States 5 Correspondence to: Seaver Wang ([email protected]) Abstract. Increasing attention is focusing upon “climate tipping elements” – large-scale earth systems anticipated to respond through positive feedbacks to anthropogenic climate change by shiFting towards new long-term states. In some but not all cases, such changes could produce additional greenhouse gas emissions or radiative Forcing that could compound global warming. Developing greater understanding oF tipping elements is important for predicting future climate risks. Here we 10 review mechanisms, predictions, impacts, and knowledge gaps associated with ten notable climate tipping elements. We also evaluate which tipping elements are more imminent and whether shiFts will likely manifest rapidly or over longer timescales. Some tipping elements are significant to future global climate and will likely afFect major ecosystems, climate patterns, and/or carbon cycling within the current century. However, assessments under diFFerent emissions scenarios indicate a strong potential to reduce or avoid impacts associated with many tipping elements through climate change mitigation. Most tipping elements 15 do not possess the potential For abrupt future change within years, and some tipping elements are perhaps more accurately termed climate feedbacks. Nevertheless, significant uncertainties remain associated with many tipping elements, highlighting an acute need For Further research and modeling to better constrain risks. 1 Introduction Global climate change is projected to continue over the 21st century in response to ongoing human emissions oF greenhouse 20 gases and land-use changes (Peters et al., 2020; Raftery et al., 2017). -
Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase
Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase MICHAEL D. KING1 AND SI-CHEE TSAY2 NASA Goddard Space Flight Center Greenbelt, Maryland 20771 STEVEN E. PLATNICK2 AND MENGHUA WANG3 University of Maryland Baltimore County NASA Goddard Space Flight Center Greenbelt, Maryland 20771 KUO-NAN LIOU Department of Atmospheric Sciences University of California Los Angeles Los Angeles,, California 90095-1565 MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05 MOD06 – Cloud product (23 December 1997, version 5) 1 Earth Sciences Directorate 2 Laboratory for Atmospheres 3 Laboratory for Hydrospheric Processes TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................... 1 2. OVERVIEW AND BACKGROUND INFORMATION......................................... 2 2.1. Experimental objectives..................................................................................... 2 2.2. Historical perspective......................................................................................... 5 2.3. Instrument characteristics.................................................................................. 7 3. ALGORITHM DESCRIPTION ............................................................................... 10 3.1. Theoretical description..................................................................................... 10 3.1.1. Physics of problem ................................................................................ -
Earth's Climate Destiny Finally Seen More Clearly Paul Voosen
Clouds aren’t expected to dampen global warming— one reason why the planet IN DEPTH is likely to respond sharply to carbon emissions. ATMOSPHERIC SCIENCE Downloaded from Earth’s climate destiny finally seen more clearly Landmark study narrows bounds for “climate sensitivity,” ruling out benign warming http://science.sciencemag.org/ By Paul Voosen agree with the result. Whoever shepherded 2021 or 2022. The estimate will also inform this deserves our gratitude.” projections for sea-level rise, economic dam- t seems like such a simple question: Humanity has already emitted enough age, and much else. A clearer picture of those How hot is Earth going to get? Yet for CO2 to be halfway to the doubling point consequences could do much to spur local 40 years, climate scientists have re- of 560 parts per million, and many emis- governments to cut emissions and adapt peated the same unsatisfying answer: sions scenarios have the planet reaching to warming, says Diana Reckien, a climate If humans double atmospheric carbon that threshold by 2060. The report under- planning expert at the University of Twente. dioxide (CO2) from preindustrial levels, scores the risks of that course: It rules out “The decreasing uncertainty could poten- Ithe planet will eventually warm between the milder levels of warming sometimes tially motivate more jurisdictions to act.” 1.5°C and 4.5°C—a temperature range that invoked by those who would avoid emis- The study dispels uncertainty introduced on July 26, 2020 encompasses everything from a merely sions cuts. “For folks hoping for something by the latest climate models. -
Is There a Basis for Global Warming Alarm? Richard S. Lindzen
Is there a basis for global warming alarm? Richard S. Lindzen Alfred P. Sloan Professor of Atmospheric Science Massachusetts Institute of Technology Yale Center for the Study of Globalization October 21, 2005 These slides are available as a pdf file from [email protected] 1 The reality of global warming is frequently attested to by reference to a scientific consensus: Tony Blair: “The overwhelming view of experts is that climate change, to a greater or lesser extent, is man-made, and, without action, will get worse.” Elizabeth Kolbert in New Yorker: “All that the theory of global warming says is that if you increase the concentration of greenhouse gases in the atmosphere, you will also increase the earth's average temperature. It's indisputable that we have increased greenhouse-gas concentrations in the air as a result of human activity, and it's also indisputable that over the last few decades average global temperatures have gone up.” 2 These references fail to note that there are many sources of climate change, and that profound climate change occurred many times both before and after man appeared on earth. Given the ubiquity of climate change, it is implausible that all change is for the worse. Moreover, the coincidence of increasing CO2 and the small warming over the past century hardly establishes causality. Nevertheless, for the most part I do not personally disagree with the Consensus (though the absence of any quantitive considerations should be disturbing). Indeed, I know of no serious split, and suspect that the claim that there is opposition to this consensus amounts to no more than setting up a straw man to scoff at. -
Cloud Feedback Mechanisms and Their Representation in Global Climate Models Paulo Ceppi ,1* Florent Brient ,2 Mark D
Advanced Review Cloud feedback mechanisms and their representation in global climate models Paulo Ceppi ,1* Florent Brient ,2 Mark D. Zelinka 3 and Dennis L. Hartmann 4 Edited by Eduardo Zorita, Domain Editor and Editor-in-Chief Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncer- tainty in the climate response to CO2 forcing simulated by global climate models (GCMs). We review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global- mean cloud feedback in GCMs results from three main effects: (1) rising free- tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). These cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observa- tions. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High- latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. The causes of intermodel spread in cloud feedback are dis- cussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection. -
Major Climate Feedback Processes Water Vapor Feedback Snow/Ice
Lecture 5 : Climate Changes and Variations Major Climate Feedback Processes Climate Sensitivity and Feedback Water Vapor Feedback - Positive El Nino Southern Oscillation Pacific Decadal Oscillation Snow/Ice Albedo Feedback - Positive North Atlantic Oscillation (Arctic Oscillation) Longwave Radiation Feedback - Negative Vegetation-Climate Feedback - Positive Cloud Feedback - Uncertain ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu Snow/Ice Albedo Feedback Water Vapor Feedback Mixing Ratio = the dimensionless ratio of the mass of water vapor to the mass of dry air. Saturated Mixing Ratio tells you the maximum amount of water vapor an air parcel can carry. The saturated mixing ratio is a function of air temperature: the warmer the temperature the larger the saturated mixing ration. a warmer atmosphere can carry more water vapor The snow/ice albedo feedback is stronger greenhouse effect associated with the higher albedo of ice amplify the initial warming and snow than all other surface covering. one of the most powerful positive feedback This positive feedback has often been offered as one possible explanation for (from Earth’s Climate: Past and Future ) how the very different conditions of the ESS200A ESS200A Prof. Jin-Yi Yu ice ages could have been maintained. Prof. Jin-Yi Yu 1 Longwave Radiation Feedback Vegetation-Climate Feedbacks The outgoing longwave radiation emitted by the Earth depends on surface σ 4 temperature, due to the Stefan-Boltzmann Law: F = (T s) . warmer the global temperature larger outgoing longwave radiation been emitted by the Earth reduces net energy heating to the Earth system cools down the global temperature a negative feedback (from Earth’ Climate: Past and Future ) ESS200A ESS200A Prof. -
Lindzen Iris
The Iris Effect; its strange and disturbing history Richard S. Lindzen Massachusetts Institute of Technology Goddard Space Flight Center May 19, 2004 A pdf file of these slides is available upon request to [email protected]. Original papers can be found at the following URL: www-eaps.mit.edu/faculty/lindzen.htm 1 This talk focuses on what is often considered the most fundamental question in the field of climate change (namely, what is the sensitivity of global mean temperature to global radiative forcing?), and the response of the climate change community to this question. My work with M.-D. Chou and A.Y. Hou on the Iris Effect will be discussed as an explicit example. 2 This would appear to be an important and well defined question. If the climate sensitivity is low, then presumably the problem of global warming is limited; if it is high, then urgency would appear justified. Relatedly, if the sensitivity is low, the need for subsidiary studies of impacts may also be limited. Since at least 1979, the common measure of sensitivity has been the change in global mean temperature that would be expected from a doubling of CO2 once the climate system reaches equilibrium. 3 In 1979, the National Research Council’s Charney Report offered a ‘guesstimate’ of about 1.5-4.5oC. Note that there was no real basis for these bounds. The range could have been extended at both ends. The latest IPCC WG 1 report claims that the range of model results continues to show the very same range. The low end is officially reckoned to be tolerable, while the high end is judged to be ominous.