A Sequential Methodology for the Rapid Identification and Characterization of Breast Cancer-Associated Functional Snps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitochondrial Transcription Factor a Promotes DNA Strand Cleavage at Abasic Sites
Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites Wenyan Xu (许文彦)a,1, Riley M. Boyda,1, Maya O. Treea, Faris Samkaria, and Linlin Zhaoa,b,2,3 aDepartment of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859; and bBiochemistry, Cellular, and Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI 48859 Edited by Rafael Radi, Universidad de la Republica, Montevideo, Uruguay, and approved July 18, 2019 (received for review July 2, 2019) In higher eukaryotic cells, mitochondria are essential subcellular damage in cells (13, 14). Within mitochondria, AP lesions are organelles for energy production, cell signaling, and the biosynthesis also abundant and can number in the hundreds per cell, con- of biomolecules. The mitochondrial DNA (mtDNA) genome is in- sidering their steady-state level (0.2 to 3 AP sites per 105 bp) (15, dispensable for mitochondrial function because it encodes protein 16) and the number of mtDNA copies per cell (∼1,000) (17). subunits of the electron transport chain and a full set of transfer and Importantly, AP sites are chemically labile and reactive and can ribosomal RNAs. MtDNA degradation has emerged as an essential lead to secondary DNA damage such as DNA single-strand quality control measure to maintain mtDNA and to cope with mtDNA breaks (SSBs), DNA–DNA interstrand cross-links, and DNA– damage resulting from endogenous and environmental factors. protein cross-links (DPCs) (18–23). If not repaired, AP sites Among all types of DNA damage known, abasic (AP) sites, sourced and their derivatives are mutagenic in the nuclear genome (24– from base excision repair and spontaneous base loss, are the most 26); however, the understanding of the biological consequence of abundant endogenous DNA lesions in cells. -
Transcription from the Second Heavy-Strand Promoter of Human Mtdna Is Repressed by Transcription Factor a in Vitro
Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro Maria F. Lodeiroa, Akira Uchidaa, Megan Bestwickb, Ibrahim M. Moustafaa, Jamie J. Arnolda, Gerald S. Shadelb,c, and Craig E. Camerona,1 aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; bDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06520; and cDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06520 Edited* by Douglas C. Wallace, Center for Mitochondrial and Epigenomic Medicine (CMEM), Children’s Hospital of Philadelphia, Philadelphia, PA, and approved March 8, 2012 (received for review November 15, 2011) Cell-based studies support the existence of two promoters on the factor B2 (TFB2M). The long-standing paradigm was that TFAM heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. binds to a site in the promoter upstream of the transcription start However, transcription from HSP2 has been reported only once in site and recruits a complex POLRMT/TFB2M by an interaction of a cell-free system, and never when recombinant proteins have been the carboxyl-terminal tail of TFAM with TFB2M (3). However, we used. Here, we document transcription from HSP2 using an in vitro recently showed that basal mitochondrial transcription is not ab- system of defined composition. An oligonucleotide template repre- solutely dependent on TFAM (4). This observation suggested that senting positions 596–685 of mtDNA was sufficient to observe tran- the two-component transcription system found in lower eukaryotes scription by the human mtRNA polymerase (POLRMT) that was had acquired an additional layer of regulation in mammals that is absolutely dependent on mitochondrial transcription factor B2 mediated by TFAM (4). -
Mitochondrial Dysfunction in Sepsis Is Associated with Diminished
www.nature.com/scientificreports OPEN Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression Tim Rahmel 1*, Britta Marko1, Hartmuth Nowak1, Lars Bergmann1, Patrick Thon1, Katharina Rump1, Sebastian Kreimendahl2, Joachim Rassow2, Jürgen Peters3, Mervyn Singer4, Michael Adamzik1,5 & Björn Koos1,5 Sepsis is characterized by a dysregulated immune response, metabolic derangements and bioenergetic failure. These alterations are closely associated with a profound and persisting mitochondrial dysfunction. This however occurs despite increased expression of the nuclear-encoded transcription factor A (TFAM) that normally supports mitochondrial biogenesis and functional recovery. Since this paradox may relate to an altered intracellular distribution of TFAM in sepsis, we tested the hypothesis that enhanced extramitochondrial TFAM expression does not translate into increased intramitochondrial TFAM abundance. Accordingly, we prospectively analyzed PBMCs both from septic patients (n = 10) and lipopolysaccharide stimulated PBMCs from healthy volunteers (n = 20). Extramitochondrial TFAM protein expression in sepsis patients was 1.8-fold greater compared to controls (p = 0.001), whereas intramitochondrial TFAM abundance was approximate 80% less (p < 0.001). This was accompanied by lower mitochondrial DNA copy numbers (p < 0.001), mtND1 expression (p < 0.001) and cellular ATP content (p < 0.001) in sepsis patients. These fndings were mirrored in lipopolysaccharide stimulated PBMCs taken from healthy volunteers. Furthermore, TFAM- TFB2M protein interaction within the human mitochondrial core transcription initiation complex, was 74% lower in septic patients (p < 0.001). In conclusion, our fndings, which demonstrate a diminished mitochondrial TFAM abundance in sepsis and endotoxemia, may help to explain the paradox of lacking bioenergetic recovery despite enhanced TFAM expression. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19P13.1 Breast&Ndash;Ovarian Cancer Susceptibility Locus
ARTICLE Received 16 Jun 2015 | Accepted 20 Jul 2016 | Published 7 Sep 2016 DOI: 10.1038/ncomms12675 OPEN Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Kate Lawrenson et al.# A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P ¼ 9.2 Â 10 À 20), ER-negative BC (P ¼ 1.1 Â 10 À 13), BRCA1-associated BC (P ¼ 7.7 Â 10 À 16) and triple negative BC (P-diff ¼ 2 Â 10 À 5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P ¼ 2 Â 10 À 3) and ABHD8 (Po2 Â 10 À 3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 30-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk. Correspondence and requests for materials should be addressed to A.C.A. (email: [email protected]). #A full list of authors and their affiliations appears at the end of the paper. -
Functional Mechanisms Underlying Pleiotropic Risk Alleles at the 19P13.1 Breast&Ndash;Ovarian Cancer Susceptibility Locus
UC Office of the President Recent Work Title Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Permalink https://escholarship.org/uc/item/1rx2f44n Author Lawrenson, Kate Publication Date 2016-09-07 DOI 10.1038/ncomms12675 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 16 Jun 2015 | Accepted 20 Jul 2016 | Published 7 Sep 2016 DOI: 10.1038/ncomms12675 OPEN Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus Kate Lawrenson et al.# A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P ¼ 9.2 Â 10 À 20), ER-negative BC (P ¼ 1.1 Â 10 À 13), BRCA1-associated BC (P ¼ 7.7 Â 10 À 16) and triple negative BC (P-diff ¼ 2 Â 10 À 5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P ¼ 2 Â 10 À 3) and ABHD8 (Po2 Â 10 À 3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 30-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk. -
Integrated Analysis of the Critical Region 5P15.3–P15.2 Associated with Cri-Du-Chat Syndrome
Genetics and Molecular Biology, 42, 1(suppl), 186-196 (2019) Copyright © 2019, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0173 Research Article Integrated analysis of the critical region 5p15.3–p15.2 associated with cri-du-chat syndrome Thiago Corrêa1, Bruno César Feltes2 and Mariluce Riegel1,3* 1Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 2Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. 3Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Abstract Cri-du-chat syndrome (CdCs) is one of the most common contiguous gene syndromes, with an incidence of 1:15,000 to 1:50,000 live births. To better understand the etiology of CdCs at the molecular level, we investigated theprotein–protein interaction (PPI) network within the critical chromosomal region 5p15.3–p15.2 associated with CdCs using systemsbiology. Data were extracted from cytogenomic findings from patients with CdCs. Based on clin- ical findings, molecular characterization of chromosomal rearrangements, and systems biology data, we explored possible genotype–phenotype correlations involving biological processes connected with CdCs candidate genes. We identified biological processes involving genes previously found to be associated with CdCs, such as TERT, SLC6A3, and CTDNND2, as well as novel candidate proteins with potential contributions to CdCs phenotypes, in- cluding CCT5, TPPP, MED10, ADCY2, MTRR, CEP72, NDUFS6, and MRPL36. Although further functional analy- ses of these proteins are required, we identified candidate proteins for the development of new multi-target genetic editing tools to study CdCs. -
BABAM1 (H3): 293T Lysate: Sc-128160
SANTA CRUZ BIOTECHNOLOGY, INC. BABAM1 (h3): 293T Lysate: sc-128160 BACKGROUND RECOMMENDED SUPPORT REAGENTS Consisting of around 63 million bases with over 1,400 genes, chromosome 19 To ensure optimal results, the following support reagents are recommended: makes up over 2% of human genomic DNA. Chromosome 19 includes a diver- 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz sity of interesting genes and is recognized for having the greatest gene den- Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ sity of the human chromosomes. It is the genetic home for a number of im- Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: munoglobulin superfamily members including the killer cell and leukocyte Ig- sc-516214 and Western Blotting Luminol Reagent: sc-2048. like receptors, a number of ICAMs, the CEACAM and PSG family, and Fcα receptors. Key genes for eye color and hair color also map to chromosome DATA 19. Peutz-Jeghers syndrome, spinocerebellar ataxia type 6, the stroke disor- der CADASIL, hypercholesterolemia and Insulin-dependent diabetes have AB been linked to chromosome 19. Translocations with chromosome 19 and 90 K – chromosome 14 can be seen in some lymphoproliferative disorders and typi- 55 K – < BABAM1 cally involve the proto-oncogene BCL3. 43 K – 34 K – REFERENCES 23 K – 1. Zimmermann, W., et al. 1988. Chromosomal localization of the carcinoem- bryonic antigen gene family and differential expression in various tumors. BABAM1 (H-10): sc-398570. Western blot analysis of Cancer Res. 48: 2550-2554. BABAM1 expression in non-transfected: sc-117752 (A) and human BABAM1 transfected: sc-128160 (B) 293T 2. -
DNA Methylation Profiles Correlated to Striped Bass Sperm Fertility L
Woods III et al. BMC Genomics (2018) 19:244 https://doi.org/10.1186/s12864-018-4548-6 RESEARCH ARTICLE Open Access DNA methylation profiles correlated to striped bass sperm fertility L. Curry Woods III1†, Yaokun Li2*†, Yi Ding1†,JiananLiu1, Benjamin J. Reading3,S.AdamFuller4 and Jiuzhou Song1* Abstract Background: Striped bass (Morone saxatilis) spermatozoa are used to fertilize in vitro the eggs of white bass (M. chrysops) to produce the preferred hybrid for the striped bass aquaculture industry. Currently, only one source of domestic striped bass juveniles is available to growers that is not obtained from wild-caught parents and is thus devoid of any genetic improvement in phenotypic traits of importance to aquaculture. Sperm epigenetic modification has been predicted to be associated with fertility, which could switch genes on and off without changing the DNA sequence itself. DNA methylation is one of the most common epigenetic modification types and changes in sperm epigenetics can be correlated to sub-fertility or infertility in male striped bass. The objective of this study was to find the differentially methylated regions (DMRs) between high-fertility and sub-fertility male striped bass, which could potentially regulate the fertility performance. Results: In our present study, we performed DNA methylation analysis of high-fertility and sub-fertility striped bass spermatozoa through MBD-Seq methods. A total of 171 DMRs were discovered in striped bass sperm correlated to fertility. Based on the annotation of these DMRs, we conducted a functional classification analysis and two important groups of genes including the WDR3/UTP12 and GPCR families, were discovered to be related to fertility performance of striped bass. -
Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism
International Journal of Molecular Sciences Review Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism Makiko Mochizuki-Kashio 1, Hiroko Shiozaki 2, Toshio Suda 3,4 and Ayako Nakamura-Ishizu 1,* 1 Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; [email protected] 2 Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; [email protected] 3 Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore; [email protected] 4 International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan * Correspondence: [email protected] Abstract: Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis. Keywords: hematopoietic stem cells; ROS; mitochondria; lysosome; autophagy; folliculin Citation: Mochizuki-Kashio, M.; Shiozaki, H.; Suda, T.; Nakamura-Ishizu, A. Mitochondria 1. Introduction Turnover and Lysosomal Function in Hematopoietic cells consist of a heterogenous group of cells originating from hematopoi- Hematopoietic Stem Cell Metabolism. etic stem cells (HSCs) [1]. HSCs differentiate into multi-potent progenitor cells (MPPs) Int. J. Mol. Sci. 2021, 22, 4627. -
MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization. -
Cross-Strand Binding of TFAM to a Single Mtdna Molecule Forms the Mitochondrial Nucleoid
Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid Christian Kukata,b,1, Karen M. Daviesc,1, Christian A. Wurmd,1, Henrik Spåhra, Nina A. Bonekampa, Inge Kühla, Friederike Joosc, Paola Loguercio Polosae, Chan Bae Parka,f, Viktor Posseg, Maria Falkenbergg, Stefan Jakobsd,h, Werner Kühlbrandtc, and Nils-Göran Larssona,i,2 aDepartment of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; bFACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; cDepartment of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; dDepartment of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; eDepartment of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy; fInstitute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea; gDepartment of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; hDepartment of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany; and iDepartment of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden Edited by F. Ulrich Hartl, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved August 4, 2015 (received for review June 23, 2015) Mammalian mitochondrial DNA (mtDNA) is packaged by mito- To date, mitochondrial transcription factor A (TFAM) is the chondrial transcription factor A (TFAM) into mitochondrial nucle- only protein that fulfills a stringent definition of a structural oids that are of key importance in controlling the transmission and component that packages mtDNA in the mammalian nucleoid expression of mtDNA. Nucleoid ultrastructure is poorly defined, (8).