The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: a Review Study

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: a Review Study ArchiveArch Neurosci of .SID 2020 January; 7(1):e68874. doi: 10.5812/ans.68874. Published online 2019 November 11. Review Article The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: A Review Study Sadegh Shirian 1, 2, Yahya Daneshbod 3, Saranaz Jangjoo 4, Amir Ghaemi 5, Arash Goodarzi 6, Maryam Ghavideldarestani 7, Ahmad Emadi 1, Arman Ai 8, Akbar Ahmadi 9, * and Jafar Ai 9, ** 1Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran 2Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran 3Department of Pathology and Laboratory Medicine, Loma Linda University, California, United States 4School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 5Department of Virology, Pasteur Institute of Iran, Tehran, Iran 6Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran 7Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran 8School of Medicine, Tehran University of Medical Sciences, Tehran, Iran 9Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran *Corresponding author: Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. Email: [email protected] **Corresponding author: Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. Email: [email protected] Received 2018 March 23; Revised 2019 July 03; Accepted 2019 July 31. Abstract Since the number of prognostic and predictive neuro-oncologic genetic markers is steadily increasing, a comprehensive analysis of the molecular techniques used to examine neuro-oncology samples is vastly required. Molecular analysis and profiling of brain ma- lignancies result in improved diagnostic accuracy, target identification, and predictive prognosis. Application of high-throughput molecular approaches, such as next generation sequencing (NGS), to analyze brain tumors has provided a large amount of molecu- lar information. In the clinical practice, the application of NGS has been increased, which has consequently improved the treatment option for brain cancer as well as other types of malignancies. Target therapy has recently become one of the most promising treat- ment options for various tumors, especially brain tumors. In this review, we provided and summarized high-throughput genomic studies, such as NGS technique, that could independently identify the integrated management and diagnosis of primary human brain tumors across a variety of entities with pathognomonic genetic alterations. Keywords: Next-Generation Sequencing, Brain Tumors, Target Identification, Genetic Markers 1. Context controls are necessary for preventing tumor malignancy (3). Since the number of prognostic and predictive neuro- According to the 3rd edition of the International Clas- oncologic genetic markers is steadily increasing, compre- sification of Diseases for Oncology, tumors of the central hensive analyses of the molecular techniques used to ex- nervous system (CNS) are those affecting the spinal cord amine neuro-oncology samples are vastly required for the and brain, including the pituitary gland, meninges, pineal evaluation of brain tumor specimens in a modern pathol- gland, and nerves (1). Brain tumors have been traditionally ogy setting. Molecular analysis and profiling of brain can- classified based on the microscopic investigation of hema- cers lead to improved diagnostic accuracy, target identi- toxylin and eosin- (H & E) stained tissue sections. The in- fication and predictive prognosis (4). The recent devel- creased comprehensive knowledge in relevant genetic al- opment of NGS technology and other complementary ge- terations and mutations with clinical outcomes resulted nomic platforms have transformed our capacity to investi- in the incorporation of molecular signatures as a part of gate the molecular landscapes of human cancers, includ- the diagnosis, management, and treatment of CNS ma- ing brain tumors (5). In this review, we summarized and lignancies (2). Various brain cancer susceptibility genes analyzed the results of high-throughput genomic studies, are involved in DNA damage response, which strongly in- such as NGS, in order to diagnose various types of brain tu- dicates that critical DNA repair pathways and checkpoint Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original workwww.SID.ir is properly cited. Archive of SID Shirian S et al. mors. ing optic glioma, cerebellar astrocytoma, and infundibu- loma due to their certain anatomic sites and the distinct predilection in young patients (14). Considering the dif- 2. Gliomas ficulty in diagnosing PA using anaplastic features that are exclusively based on morphology, applying the rele- Diffuse gliomas (DGs), the most common primary ma- vant molecular biomarkers to diagnose the presence of lignancy of the CNS, generally affect the cerebral hemi- mitogen-activating protein kinase (MAPK) pathway alter- spheres of adults. According to the World Health Organiza- ations are necessary (15). The results of whole genome se- tion (WHO) classification of the CNS tumors, lower-grade quencing have shown that single alterations of the MAPK gliomas or grades I and II DGs are oligodendrogliomas, pathway are solely detected in almost all PA cases, indicat- astrocytomas, and oligoastrocytomathat the latest is a ing that PA represents a one-pathway disease (14). Activa- less well-defined type of oligodendroglial (OA) (6). It has tion of MAPK signaling through various described muta- been reported that molecular landscape, such as 1p/19q co- tions or alterations, the commonest tandem duplication deletion status, is a better predictor of clinical outcome is located at 7q34 that leads to KIAA1459-BRAF fusion, is than that of the histologic distinction between oligoden- present in most of the PA cases. Therefore, the identifica- droglioma and OA (7). Therefore, the WHO has recently up- tion of a known mutation/alteration is useful to support dated the CNS tumor classification (8). In fact, NGS is an the diagnosis of PA (16-18). To investigate the full range effective technique for the detection of a wide variety of of genetic alterations present in PA, the whole genome molecular alterations, which provides an efficient, attrac- sequencing of DNA obtained from blood has been per- tive, as well as a cost-effective unimodal molecular plat- formed. Jones et al. have identified KIAA1549:BRAF fusion form for the classification of lower-grade gliomas based variants, FAM131B:BRAF fusion, four BRAFV600E mutations, on the 2016 WHO CNS criteria (9, 10). The results of the and one BRAFins599T in pediatric brain tumors by NGS anal- sequencing of the samples obtained from patients with ysis (16). It has been also detected a new recurrent alter- lower-grade gliomas, which were organized by IDH1, IDH2, ation, namely mutation of two hotspot residues (N546 and and NGS-based 1p/19q co-deletion status, are shown in Fig- K656) in the kinase domain of FGFR1 that are occasionally ure 1(11). Carter et al. have used a single, targeted NGS observed in adult glioblastoma (GBM) (19). The NGS anal- panel to detect single-nucleotide variation and copy num- ysis has also demonstrated that GIT2-BRAF fusion is identi- ber variation in 50 patients with lower-grade gliomas, in- cal to that detected in other fusion alterations in PA. This cluding 36 oligoastrocytomas, 11 oligodendrogliomas, 2 as- fusion most likely acts as a tumor driver that activates the trocytomas, and 1 lower-grade gliomas. They have found MAPK signaling pathway (20). that NGS is superior to fluorescence in situ hybridization (FISH) and immunohistochemistry in the detection of seg- mental chromosomal mutation from whole-arm deletions 4. Glioblastoma (GB) in glioma tumors (11). Targeted NGS for mutations in TP53, ATRX, CIC, IDH1, IDH2, FUBP1, PI3KC, EGFR, H3F3A, TERT, BRAF, Glioblastoma multiforme (GBM) is an extremely malig- PTEN, and NOTCH genes and for copy number alterations nant CNS tumor. Mutation and alteration of the epider- of chromosomes 1p, 19q, 10q, and 7 has been also used to mal growth factor receptor (EGFR) have been frequently re- classify DG (12) . Indeed, DGs could be classified as type I ported in various human malignancies, such as GBM (21). (1p/19q codeletion, “oligodendroglioma”), type II (IDH mu- However, the presence of multiple types or heterogeneous tation, “astrocytoma”), type III (TERT mutation or 7+/10q mutations is one of the GBM hallmarks that leads to insuffi- and 1p/19q intact, “glioblastoma”), and childhood glioblas- cient single-agent activity over standard treatments in pa- toma (H3F3A mutation) (12). tients with GBM (22). Therefore, the determination of pre- dictive biomarkers can predict the fate of EGFR-targeted 3. Pilocytic Astrocytoma therapy that resulted in help to the patients with GBM and improved the treatment sensitivity. In addition, de- Pilocytic astrocytomas (PAs) are WHO grade I CNS tu- tailed
Recommended publications
  • Meqtl and Ncrna Functional Analyses of 102 GWAS-Snps Associated with Depression Implicate HACE1 and SHANK2 Genes Diana M
    Ciuculete et al. Clinical Epigenetics (2020) 12:99 https://doi.org/10.1186/s13148-020-00884-8 RESEARCH Open Access meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes Diana M. Ciuculete1* , Sarah Voisin2, Lara Kular3, Jörgen Jonsson1, Mathias Rask-Andersen4, Jessica Mwinyi1 and Helgi B. Schiöth1,5 Abstract Background: Little is known about how genetics and epigenetics interplay in depression. Evidence suggests that genetic variants may change vulnerability to depression by modulating DNA methylation (DNAm) and non-coding RNA (ncRNA) levels. Therefore, the aim of the study was to investigate the effect of the genetic variation, previously identified in the largest genome-wide association study for depression, on proximal DNAm and ncRNA levels. Results: We performed DNAm quantitative trait locus (meQTL) analysis in two independent cohorts (total n = 435 healthy individuals), testing associations between 102 single-nucleotide polymorphisms (SNPs) and DNAm levels in whole blood. We identified and replicated 64 SNP-CpG pairs (padj. < 0.05) with meQTL effect. Lower DNAm at cg02098413 located in the HACE1 promoter conferred by the risk allele (C allele) at rs1933802 was associated with higher risk for depression (praw = 0.014, DNAm = 2.3%). In 1202 CD14+ cells sorted from blood, DNAm at cg02088412 positively correlated with HACE1 mRNA expression. Investigation in postmortem brain tissue of adults diagnosed with major depressive disorder (MDD) indicated 1% higher DNAm at cg02098413 in neurons and lower HACE1 mRNA expression in CA1 hippocampus of MDD patients compared with healthy controls (p = 0.008 and 0.012, respectively). Expression QTL analysis in blood of 74 adolescent revealed that hsa-miR-3664-5p was associated with rs7117514 (SHANK2)(padj.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Mir-15A and Mir-16-1 Cluster Functions in Human Leukemia
    MiR-15a and miR-16-1 cluster functions in human leukemia George A. Calin*†‡, Amelia Cimmino*§, Muller Fabbri*, Manuela Ferracin¶, Sylwia E. Wojcik*, Masayoshi Shimizu*§, Cristian Taccioli*, Nicola Zanesi*, Ramiro Garzon*, Rami I. Aqeilan*, Hansjuerg Alder*, Stefano Volinia*ʈ, Laura Rassenti**, Xiuping Liu*, Chang-gong Liu*, Thomas J. Kipps**, Massimo Negrini¶, and Carlo M. Croce*†† *Human Cancer Genetics Program and †Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210; §Department of Biochemistry and Biophysics ‘‘F. Cedrangolo,’’ Medical School, Second University of Naples, 80138 Naples, Italy; ¶Department of Experimental and Diagnostic Medicine, Interdepartment Center for Cancer Research and ʈMorphology and Embryology Department, University of Ferrara, 44100 Ferrara, Italy; and **Department of Medicine, University of California at San Diego, La Jolla, CA 92093 Contributed by Carlo M. Croce, January 16, 2008 (sent for review December 6, 2007) MicroRNAs (miRNAs) are short noncoding RNAs regulating gene megakaryocytic leukemia (22). These data support a role for expression that play roles in human diseases, including cancer. Each miR-15a and miR-16-1 as tumor-suppressor genes (TSGs) in CLLs miRNA is predicted to regulate hundreds of transcripts, but only few and perhaps in other malignancies in which these genes are lost or have experimental validation. In chronic lymphocytic leukemia (CLL), down-regulated. the most common adult human leukemia, miR-15a and miR-16-1 are Here, to investigate the mechanism of action of miR-15a and lost or down-regulated in the majority of cases. After our previous miR-16-1 as tumor suppressors in leukemias, we analyzed the work indicating a tumor suppressor function of miR-15a/16-1 by effects of miR-15a and miR-16-1 on transcriptome and proteome in targeting the BCL2 oncogene, here, we produced a high-throughput MEG-01 leukemic cells.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • In Silico Prediction and Experimental Validation of Natural Antisense Transcripts in Two Cancer-Associated Regions of Human Chromosome 6
    1099-1108 27/2/2009 01:48 ÌÌ ™ÂÏ›‰·1099 INTERNATIONAL JOURNAL OF ONCOLOGY 34: 1099-1108, 2009 In silico prediction and experimental validation of natural antisense transcripts in two cancer-associated regions of human chromosome 6 LAURA MONTI1*, RAFFAELLA CINQUETTI1*, ALESSANDRO GUFFANTI2*, FRANCESCO NICASSIO3, MATTIA CREMONA4, GIOVANNI LAVORGNA5, FABRIZIO BIANCHI3, FRANCESCA VIGNATI1, DAVIDE CITTARO6, ROBERTO TARAMELLI1 and FRANCESCO ACQUATI1 1Department of Biotechnology and Molecular Sciences, University of Insubria, Via JH Dunant 3, I-21100 Varese; 2Nanotechnologies Group, Institute of Biomedical Technologies, CNR, Via Fantoli 16/15, I-20138 Milano; 3IFOM - FIRC Institute of Molecular Oncology, Via Adamello 16, I-20139 Milano; 4Proteomic Unit, Department of Experimental Oncology, National Institute of Cancer, Via Venezian 21, I-20133 Milano; 5DIBIT, San Raffaele Hospital, Via Olgettina 58, I-20132 Milano; 6HPC and Bioinformatics Systems @ Informatics Core, FIRC Insitute of Molecular Oncology (IFOM), Via Adamello 16, I-20139 Milano, Italy Received August 28, 2008; Accepted October 27, 2008 DOI: 10.3892/ijo_00000237 Abstract. Antisense transcription has long been recognized human malignancies, such as non-Hodgkin's lymphomas, as a mechanism involved in the regulation of gene expression. melanoma and carcinomas of the mammary gland, ovary, Therefore, several human diseases associated with abnormal uterus, stomach, kidney and salivary gland (1-3). The involve- patterns of gene expression might display antisense RNA- ment of this chromosome in the pathogenesis of the above- mediated pathogenetic mechanisms. Such issue could be mentioned cancer types has been demonstrated by LOH particularly relevant for cancer pathogenesis, since deregulated studies and chromosome-transfer assays, which led to the gene expression has long been established as a hallmark of identification of several regions of minimal deletion spanning cancer cells.
    [Show full text]
  • Download Ppis for Each Single Seed, Thus Obtaining Each Seed’S Interactome (Ferrari Et Al., 2018)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.425874; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias Nikoleta Vavouraki1,2, James E. Tomkins1, Eleanna Kara3, Henry Houlden3, John Hardy4, Marcus J. Tindall2,5, Patrick A. Lewis1,4,6, Claudia Manzoni1,7* Author Affiliations 1: Department of Pharmacy, University of Reading, Reading, RG6 6AH, United Kingdom 2: Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AH, United Kingdom 3: Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 4: Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 5: Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, United Kingdom 6: Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom 7: School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom *Corresponding author: [email protected] Abstract The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Despite the identification of causative mutations in over 70 genes, the molecular aetiology remains unclear. Due to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein- protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes.
    [Show full text]
  • HACE1-Dependent Protein Degradation Provides Cardiac Protection in Response to Haemodynamic Stress
    ARTICLE Received 18 Sep 2013 | Accepted 11 Feb 2014 | Published 11 Mar 2014 DOI: 10.1038/ncomms4430 OPEN HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress Liyong Zhang1,2, Xin Chen1,2, Parveen Sharma2, Mark Moon1,2, Alex D. Sheftel1, Fayez Dawood1,2, Mai P. Nghiem2, Jun Wu2, Ren-Ke Li2, Anthony O. Gramolini2,3, Poul H. Sorensen4, Josef M. Penninger5, John H. Brumell6,7,8 & Peter P. Liu1,2,3,7 The HECT E3 ubiquitin ligase HACE1 is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling protein degradation. Hace1 deficiency in mice results in accelerated heart failure and increased mortality under haemodynamic stress. Hearts from Hace1 À / À mice display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of LC3, p62 and ubiquitinated proteins enriched for cytoskeletal species, indicating impaired autophagy. Our data suggest that HACE1 mediates p62-dependent selective autophagic turnover of ubiquitinated proteins by its ankyrin repeat domain through protein–protein interaction, which is independent of its E3 ligase activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that HACE1 has a protective function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and therapeutic target for heart disease. 1 University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7. 2 Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4.
    [Show full text]
  • Whole-Exome Sequencing in Familial Parkinson Disease
    Supplementary Online Content Farlow JL, Robak LA, Hetrick K, et al. Whole-exome sequencing in familial Parkinson disease. JAMA Neurol. Published online November 23, 2015. doi:10.1001/jamaneurol.2015.3266. eMethods. Supplemental Methods eFigure 1. Pedigrees of Discovery Cohort Families A-I eFigure 2. Pedigrees of Discovery Cohort Families J-Q eFigure 3. Pedigrees of Discovery Cohort Families R-Z eFigure 4. Pedigrees of Discovery Cohort Families AA-AF eTable 1. Single-Nucleotide Variants Identified in the Filtered Genes With GO Annotation eTable 2. Primer Sequences for Sanger Sequencing Verification of Identified Variants of Interest This supplementary material has been provided by the authors to give readers additional information about their work. © 2015 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/27/2021 eMethods. Supplemental Methods Whole exome sequencing Discovery cohort. All members of each family were sequenced at the same center (44 samples/15 families at the Center for Inherited Disease Research [CIDR], and 53 samples/18 families at the HudsonAlpha Institute for Biotechnology). One family with 4 members was sequenced at both centers (eMethods). The Agilent SureSelect 50Mb Human All Exon Kit (CIDR) and Nimblegen 44.1Mb SeqCap EZ Exome Capture version 2.0 (HudsonAlpha) were used for capture, and the Illumina HiSeq 2000 system was used for 100bp paired-end sequencing. Samples were aligned to the human genome (build hg19) using Burrows Wheeler Aligner1. The Genome Analysis Toolkit (GATK)2 was used for local realignment, base quality score recalibration, and multi-sample variant calling (Unified Genotyper) for the samples sequenced at CIDR and HudsonAlpha separately.
    [Show full text]
  • Multiple Mechanisms Disrupt the Let-7 Microrna Family in Neuroblastoma
    Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Powers, John T., Kaloyan M. Tsanov, Daniel S. Pearson, Frederik Roels, Catherine S. Spina, Richard Ebright, Marc Seligson, et al. “Multiple Mechanisms Disrupt the Let-7 microRNA Family in Neuroblastoma.” Nature 535, no. 7611 (July 6, 2016): 246–251. © 2016 Rights Managed by Nature Publishing Group As Published http://dx.doi.org/10.1038/nature18632 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/107912 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 January 14. Published in final edited form as: Nature. 2016 July 14; 535(7611): 246–251. doi:10.1038/nature18632. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma John T Powers1, Kaloyan M Tsanov1, Daniel S Pearson1, Frederik Roels4, Catherine S Spina2, Richard Ebright1, Marc Seligson1, Yvanka de Soysa1, Patrick Cahan1, Jessica Theiβen4, Ho-Chou Tu1, Areum Han1, Kyle C Kurek3, Grace S LaPier1, Jihan K Osborne1, Samantha J Ross1, Marcella Cesana1, James J Collins2, Frank Berthold4, and George Q Daley1,* 1Division of Pediatric Hematology/Oncology,
    [Show full text]
  • Rac Signaling Drives Clear Cell Renal Carcinoma Tumor Growth by Priming the Tumor Microenvironment for an Angiogenic Switch
    Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/1535-7163.MCT-19-0762 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Rac signaling drives clear cell renal carcinoma tumor growth by priming the tumor microenvironment for an angiogenic switch Erik T. Goka1, Pallavi Chaturvedi1, Dayrelis T. Mesa Lopez1, Marc E. Lippman2 1Geneyus LLC, Miami Florida 33136 2Department of Oncology, Georgetown University, Washington, DC 20057 Keywords: Rac1, renal cell carcinoma, angiogenesis, VEGF *To whom correspondence should be addressed: Erik Goka, Ph.D. Geneyus LLC 1951 NW 7th Ave, Suite 300, Miami FL, 33136 email: [email protected] Disclosure of Potential Conflicts of interest E.T. Goka has ownership interest (including stock, patents, etc.) in patents, stock, and is an employee of Geneyus LLC. P. Chaturvedi is an employee of Geneyus. D.T.M. Lopez is an employee of Geneyus LLC. M.E. Lippman is a board member at Geneyus; and has Ownership Interest (including stock.patents, etc.) in Geneyus LLC. 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/1535-7163.MCT-19-0762 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Clear cell renal cell carcinoma (ccRCC) remains a common cause of cancer mortality. Better understanding of ccRCC molecular drivers resulted in the development of anti-angiogenic therapies that block the blood vessels that supply tumors with nutrients for growth and metastasis.
    [Show full text]
  • Physiopathological Bases of the Disease Caused by HACE1 Mutations: Alterations in Autophagy, Mitophagy and Oxidative Stress Response
    Journal of Clinical Medicine Article Physiopathological Bases of the Disease Caused by HACE1 Mutations: Alterations in Autophagy, Mitophagy and Oxidative Stress Response Olatz Ugarteburu 1 , Marta Sánchez-Vilés 1, Julio Ramos 2, Tamara Barcos-Rodríguez 3, Gloria Garrabou 3 , Judit García-Villoria 1 , Antonia Ribes 1,* and Frederic Tort 1,* 1 Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, 08028 Barcelona, Spain; [email protected] (O.U.); [email protected] (M.S.-V.); [email protected] (J.G.-V.) 2 Hospital of Torrecardenas, 04009 Almeria, Spain; [email protected] 3 Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, CIBERER, 08036 Barcelona, Spain; [email protected] (T.B.-R.); [email protected] (G.G.) * Correspondence: [email protected] (A.R.); [email protected] (F.T.) Received: 28 February 2020; Accepted: 24 March 2020; Published: 26 March 2020 Abstract: Recessive HACE1 mutations are associated with a severe neurodevelopmental disorder (OMIM: 616756). However, the physiopathologycal bases of the disease are yet to be completely clarified. Whole-exome sequencing identified homozygous HACE1 mutations (c.240C>A, p.Cys80Ter) in a patient with brain atrophy, psychomotor retardation and 3-methylglutaconic aciduria, a biomarker of mitochondrial dysfunction. To elucidate the pathomechanisms underlying HACE1 deficiency, a comprehensive molecular analysis was performed in patient fibroblasts. Western Blot demonstrated the deleterious effect of the mutation, as the complete absence of HACE1 protein was observed. Immunofluorescence studies showed an increased number of LC3 puncta together with the normal initiation of the autophagic cascade, indicating a reduction in the autophagic flux.
    [Show full text]
  • Genetic Heterogeneity of Diffuse Large B-Cell Lymphoma
    Genetic heterogeneity of diffuse large B-cell lymphoma Jenny Zhanga,b,1, Vladimir Grubora,1, Cassandra L. Lovea, Anjishnu Banerjeec, Kristy L. Richardsd, Piotr A. Mieczkowskid, Cherie Dunphyd, William Choie, Wing Yan Aue, Gopesh Srivastavae, Patricia L. Lugarf, David A. Rizzierif, Anand S. Lagoof, Leon Bernal-Mizrachig, Karen P. Manng, Christopher Flowersg, Kikkeri Nareshh, Andrew Evensi, Leo I. Gordonj, Magdalena Czaderk, Javed I. Gilll, Eric D. Hsim, Qingquan Liua, Alice Fana, Katherine Walsha, Dereje Jimaa, Lisa L. Smithn, Amy J. Johnsonn, John C. Byrdn, Micah A. Luftigf, Ting Nio, Jun Zhuo, Amy Chadburnj, Shawn Levyp, David Dunsonc, and Sandeep S. Davea,b,f,2 aDuke Institute for Genome Sciences and Policy, bDuke Cancer Institute and Department of Medicine, and cDepartment of Statistical Science, Duke University, Durham, NC 27710; dUniversity of North Carolina at Chapel Hill, Chapel Hill, NC 27599; eThe University of Hong Kong, Queen Mary Hospital, Hong Kong, China; fDuke University Medical Center, Durham NC 27710; gEmory University, Atlanta GA 30322; hImperial College, London, United Kingdom; iUniversity of Massachusetts, Worcester, MA 01655; jNorthwestern University, Chicago IL 60208; kIndiana University, Indianapolis IN 46202; lBaylor University Medical Center, Dallas TX 75246; mCleveland Clinic, Cleveland, OH 44195; nDivision of Hematology and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; oGenetics and Development Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and pHudson Alpha Institute for Biotechnology, Huntsville, AL 35806 Edited* by Elliott Kieff, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, and approved November 27, 2012 (received for review April 2, 2012) Diffuse large B-cell lymphoma (DLBCL) is the most common form Results of lymphoma in adults.
    [Show full text]