<<

University of Nebraska Medical Center DigitalCommons@UNMC

Journal Articles: Biochemistry & Molecular Biology Biochemistry & Molecular Biology

10-2000

Genomic structure of murine mitochondrial DNA polymerase- gamma.

Justin L. Mott University of Nebraska Medical Center, [email protected]

Grace Denniger Saint Louis University

Steve J. Zullo National Institute of Mental Health

H. Peter Zassenhaus Saint Louis University

Follow this and additional works at: https://digitalcommons.unmc.edu/com_bio_articles

Part of the Medical Biochemistry Commons, and the Medical Molecular Biology Commons

Recommended Citation Mott, Justin L.; Denniger, Grace; Zullo, Steve J.; and Zassenhaus, H. Peter, "Genomic structure of murine mitochondrial DNA polymerase-gamma." (2000). Journal Articles: Biochemistry & Molecular Biology. 3. https://digitalcommons.unmc.edu/com_bio_articles/3

This Article is brought to you for free and open access by the Biochemistry & Molecular Biology at DigitalCommons@UNMC. It has been accepted for inclusion in Journal Articles: Biochemistry & Molecular Biology by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. DNAANDCELLBIOLOGY Volume19,Number10,2000 MaryAnnLiebert,Inc. Pp.601–605

GenomicStructureofMurineMitochondrial DNAPolymerase-g

JUSTINL.MOTT,1 GRACEDENNIGER,1 STEVEJ.ZULLO,2 andH.PETERZASSENHAUS1

ABSTRACT

Wehave sequencedagenomiccloneof theencodingthemousemitochondrialDNA polymerase.The geneconsistsof23exons,whichspanapproximately13.2kb,withexonsranginginsizefrom53to768bp. Allintron–exonboundariesconformtotheGT-AGrule.Bycomparisonwiththegenomicsequence, wefoundremarkableconservationofthegenestructure;theintron–exonbordersareinalmostidenticallo- cationsforthe22introns.The59 upstreamregioncontainsapproximately300bpofhomologybetweenthe mouseandhumansequencesthatpresumablycontainthepromoterelement.Thisregionlacksanyobvious TATAdomainandisrelativelyGCrich,consistentwiththehousekeepingfunctionofthemitochondrialDNA polymerase.Finally,withinthe59 flankingregion,bothmouseandhumanhavearegionof73bpwith highhomologytothetRNA-Arggene.

INTRODUCTION thegenomicsequence(GenBankAccessionNo.AC005316)of the human Pol g gene (POLG) areknown, the genomic se- HE MITOCHONDRIAL is a circularDNA molecule quenceofthemouse Polg providesinformationaboutthe Tthatisreplicatedandmaintainedindependentlyofthenu- conservationof thegenomic structure.Furthermore,thepro- cleargenome. Multiple canexistwithin eachmito- motercan be tentativelyassigned by studying theconserved chondrion, andtherearehundreds tothousandsofmitochon- flankingDNA. driaper.Theessentialrolethatmitochondriallyencoded playinenergymetabolismunderscorestheimportance ofmaintainingthisextranucleargenome.Toreplicatethemi- tochondrial DNA (mtDNA), mitochondria have a dedicated MATERIALSANDMETHODS DNApolymerase,termedpolymerasegamma(Pol g;Lecrenier et al ., 1997). Like mostmitochondrial proteins,Pol g isen- Identification,isolation,andsequencing codedbythenucleusandimportedintomitochondria(Vooset al .,1999).Themurinegeneislocatedon7,and ColonyarraysobtainedfromResearchGeneticswereprobed thehumanhomologlocalizestoasyntenicregiononthelong for Polg using a probe generated from the cDNA. Positive armofchromosome15(Zullo etal .,1997).Toimproveourun- colonieswereobtained(ResearchGenetics)andsubclonedac- derstandingofthePol g gene,wehaveidentifiedandsequenced cordingtothemanufacturer’sinstructions.Southernblottingof a genomic clone containing themouse homolog (Polg). The DNAminiprepsrevealedthatBAC408-F6containedboth59 cDNAsequenceformousePolg waspreviouslyreportedby and39 terminiofthePolg cDNA.TheBACDNAwasmini- us(GenBankAccessionNo.U53584)*andusedtoidentifythe prepped accordingto themanufacturer’s instructionsand di- intron–exonjunctionsofthisgene. rectlysequencedusingdyeterminatortechnology(ABI)runon Asboth thecDNA(GenBankAccessionNo.002693) and anABIPrism310GeneticAnalyzerbycapillaryflow.

1DepartmentofMolecularMicrobiologyandImmunology,St.LouisUniversityHealthSciencesCenter,St.Louis,Missouri. 2LaboratoryofBiochemicalGenetics,NationalInstituteofMentalHealth,Bethesda,Maryland. *Sequencespreviouslydeterminedandreferencedinthispaperaremouse Polg cDNA(U53584),human POLG cDNA(002693;alsoU60325 andD84103),humanPOLGgenomic(AC005316),Drosophila tRNA-Arg(L09199),andhumantRNA-Arg(Z69590).Thesequence datareportedinthisarticlehavebeensubmittedtoGenBankandhavebeenassignedtheaccessionnumbersAF268970,AF268971,AF268972, AF268973,AF268974,andAF268975.

601 602 MOTTETAL.

Sequencecomparisons theexonsrangesfrom71%to95%,whileforintrons,therange isfrom55%to82%. Alignments and percenthomology weredetermined using theGCGprogram(GeneticsComputerGroup,Madison,WI), Putativepromoterregion whilerelatedsequencesweresearchedusingBLAST(Altschul etal .,1997).Allalignmentswerefurthersubjectedtoreview Onthebasisofhomologybetweenthemouseandhuman59 todetermineprecisejunctionsites.Togeneratesimultaneous upstreamregions,aputativepromoterregionhasbeenidenti- alignments,theClustalWprogramwasused(Thompson etal ., fied.Thereare297bpofhighlyhomologoussequenceimme- 1994). diatelyupstreamofthetranscriptionstartsite,with74%iden- tityfrommousetohuman.ThereisnoTATAbox,butaputative 9 RESULTS transcriptioninitiatorelement(5 GCAGACG;LoandSmale, 1996) overlapsthestartsite(basedonthefirstnucleotideof thecDNAsequence).ThereisanSp1-binding siteat 292to GenomicstructureofPolg 287,andthepromoter’soverallGCcontentisrelativelyhigh Approximately 14.8 kb of mouse genomic DNA werese- (63%).TheTATA-lesspromoterswithhighGCcontentoften quencedtodeterminethestructureof Polg .Thegenomicclone drivetheexpressionofhousekeepinggenes,consistentwitha wasintheformofabacterialartificialchromosome(BAC408- constitutiveneedformitochondrialDNAreplication.Promoter F6;ResearchGenetics)identifiedbycolonyblottingtocontain elementsknown toinfluenceexpressionofnucleargenesen- Polg (notshown).Theintron–exonjunctionswerededucedby coding mitochondrial proteins such as OXBOX-REBOX comparisonwiththecDNAsequenceusingtheGAPfunction (Chung etal .,1992),Mt3andMt4(Suzuki etal .,1991),and of the GCG program. Asillustratedin Figure 1, the geneis NRF-1 (EvansandScarpulla,1990) wereallabsentfromthe composedof23exonsand22introns.Alldonor–acceptorjunc- promoterregion.Thecorresponding regionofthehuman ge- tionsconformedtotheGT-AGrule(Table1). nomicsequenceisalsoTATA-lessandGCrich(64%)andhas Table1illustratesthestrikingconservationofintron–exon asingleSp1-bindingsite.Thereisnotaconsensusconcerning structurebetweenthemouseandhuman genes.Ofthe20in- the transcription start site for the human mRNA (compare ternalcoding exons,14areofidenticallengthwiththesame cDNAsequences002693, U60325, andD84103). Itisworth intronplacement.Lengthdifferenceswithintheremaining6in- mentioningthatthesequenceoftheputativetranscriptionini- ternalexons areminor, thelongestbeinga9-bp insertionin tiatorelementinthemousegeneis100%conservedinthehu- exon12ofthehumangene.Interestingly,besidesinsertionsof manandislocated29bpupstreamoftheearliestcDNAstart single-codonmultiples,oneortwoareinserted(ex- sitereportedforthehuman(Lecrenier etal .,1997). ons4and15)intooneexon,onlytobedeletedfromthesub- Interestingly,73bpofabsolutelyconservedsequencedefine sequentexon.Exon2issignificantlyshorterinthemousegene theupstreamboundary of homology betweenmouse andhu- secondaryinparttotheabsenceofaCAG-repeatregion(Lecre- man genes (Fig. 2A). This high-homology area (the longest nier etal .,1997;Rovioetal .,1999).Mouseexonsrangefrom stretchof100% identitywithinthe ,14.8kbofgenomicse- 53to768bpinlength.Homologyfrommousetohumanwithin quence)isalsohighlyhomologous tothetRNA-Arggenesof

FIG.1. Genomicstructureofmurine Polg.Exonsarenumberedandindicatedbyboxes,whileintronsandflankingsequences arerepresentedbyaline.Thetranscriptionstartsite(5 9)andthepoly(A)site(AAAA)areindicated,asarethetranslationstart (ATG)andstopcodons(TAA).BracketsmarkthebordersofhomologybetweenmurinePolg andhuman POLG.Thelocation ofatRNA-Arghomologisdenotedbythecloverleafsymbolnearthe59 end(seetextfordetails). GENOMICSTRUCTURE OFMURINEPOLc 603

TABLE 1. INTRON –EXON JUNCTIONS FOR MURINE POLG

Exon Exon Intron Intron Exon identity Position size Splice Intron identity Splice size No. (%) incDNA (bp) donor no. (%) acceptor (bp) Mouse 1 79 1-124 124 GAGgtttn 1 70 tttagGAC 707 Human 1-123 123 ...... c ...... T 759 Mouse 2 86 125-892 768 CTGgtaag 2 61 ttcagGTA .1128 Human 124-941 818 ...... c...... 2817 Mouse 3 89 893-1088 196 CAGgtaag 3 62 tccagGAC .666 Human 942-1137 196 ...... ct....GT 970 Mouse 4 86 1089-1254 166 GCGgtgag 4 59 ctcagAAT 156 Human 1138-1305 168 ...... c....TC 111 Mouse 5 83 1255-1403 149 CAGgtatg 5 56 gctagGAT 127 Human 1306-1452 147 ...... c....C 149 Mouse 6 89 1404-1483 80 GAGgtgag 6 82 cttagGTG 186 Human 1453-1532 80 ...... ca..... 1106 Mouse 7 95 1484-1666 183 GAGgtagt 7 76 tgcagGTA 103 Human 1533-1715 183 ...... c ..t..... 103 Mouse 8 89 1667-1815 149 AAGgtggg 8 67 cacagATC 136 Human 1716-1867 152 ...... C. 173 Mouse 9 76 1816-1942 127 TGGgtaag 9 59 aatagGTG 762 Human 1868-1994 127 .....g.. cg...A.. 926 Mouse 10 81 1943-2179 237 CAGgtaag 10 58 cacagAGC .513 Human 1995-2231 237 ...... c...... 1034 Mouse 11 88 2180-2300 121 ACGgtgag 11 57 tctagGTA 195 Human 2232-2352 121 ...... c..... 205 Mouse 12 83 2301-2378 78 CTGgtgag 12 65 cacagCCT 286 Human 2353-2439 87 ...... A.. 303 Mouse 13 82 2379-2486 108 AAGgtatg 13 64 cacagGAC 444 Human 2440-2547 108 .....g.. tc.....T 501 Mouse 14 90 2487-2647 161 CAGgtagg 14 62 tacagTTC 583 Human 2548-2708 161 .....g.. c....C.. 726 Mouse 15 89 2648-2700 53 CCAgttat 15 58 tccagGGC .208 Human 2709-2762 54 .AG..atg a.....CA 108 Mouse 16 87 2701-2819 119 CGGgtata 16 72 tgcagCCT 419 Human 2763-2880 118 ...... g ca...... 475 Mouse 17 90 2820-2955 136 ATGgtaag 17 62 tccagGCT 87 Human 2881-3016 136 .....g...... 116 Mouse 18 90 2956-3202 247 CCGgtgag 18 56 cccagGTA .442 Human 3017-3263 247 .T...... 1415 Mouse 19 79 3203-3325 123 GAAgtgag 19 55 cgcagGTC 78 Human 3264-3386 123 .....a.. .tt..... 128 Mouse 20 88 3326-3494 169 GAGgtgag 20 60 tctagTTT 109 Human 3387-3555 169 .....atc c.c..... 181 Mouse 21 92 3495-3703 209 CAGgtatg 21 55 ttcagGTG 899 Human 3556-3764 209 ...... 1005 Mouse 22 93 3704-3864 161 AGGgtgag 22 62 tacagGTG 449 Human 3765-3925 161 ...... t...... 548 Mouse 23 71 3865-4521 657 ———— Human 3926-4435 510

Identicalbasesareindicatedwith(.).Exonswhosesizesdifferinmouseandhumanareinbold. both Drosophila melanogaster (GenBank Accession No. moters,termedboxAandboxB(Sharp etal .,1981),bothof L09199) and(GenBankAccessionNo.Z69590). Up- whicharepresentinthetRNA-Arghomolog.Furthermore,the streamofthetRNA-likesequence,homology frommouse to PolIII termination signal (TTTTT) is also present, 13 bases humanisabout42%.BecausethePolg promoterisdefinedhere downstreamofthealignmentshown. asthehomologous region between themouse and human 59 flankingregions,thetRNA-likestretchiscontainedwithinthe Additionalfeatures promoter.ThetRNA-likesequenceiscodedontheminusstrand ofthechromosome(withrespecttoPolg)from 2225to 2297, Atthe39 endofthegene,homologyendsabruptlyatthehu- so itspolarity is opposite that of Polg .RNA polymerase III manpolyadenylationsignalsequencewithinexon23(Fig.2B). (PolIII) transcriptssuch as tRNAs contain two internal pro- Thishomologyborderhelpsexplaintherelativelylowoverall 604 MOTTETAL.

FIG.2. Sequencealignmentsatthebordersofhomology. (A)The59 flankingregionofthemouse(M.m.)andhuman(H.s.) Polg genescontainsasequencerelatedtoboth Drosophila (D.m.)andhumantRNA-Arggenes.Thisdefinestheupstreambor- derofhomology betweenthePol g genes.Boxednucleotidesaresharedbythreeormoreofthesequences.Thesequencesare presentedandnumberedasifcodingforthetRNA;formousePolg,thesequencestartsat 2225andendsat 2297relativeto thetranscriptionstartsite.(B)Thedownstreamborderofhomologybetweenmouseandhumanlieswithinexon23,atthehu- manpoly(A)signalsequence(shaded).Thenoncanonicalpoly(A)signalsequenceforthemouse(alsoshaded)lies185bpdown- stream(gapindicatedby. . .).Polyadenylationsitesaredenotedbythelarge A attheendofeachsequence.

homologyofexon23,asthefirst459basesofthisexonshare leavesafootprint,soweexaminedthegenomicsequencefor ,85% homology andthelast198 baseshave ,40% homol- suchclues.Thethreemainfeaturesofretroposedgenesare;(1) ogy.Thus,boththe59 and39 bordersofhomology aresharp, directrepeats(7–21bp)flankingbothendsofthegene;(2)the steppingfrom .85% to,40% homology atadefinedpoint. remainsofapoly(A)tail;and(3)absenceofintrons(Weiner Ofnote,thehumanpoly(A)signalsequence(5 9-AAUAAA) etal .,1986).Becauseoftheevolutionarydistancebetweenthe isconservedinthemouse,yetthemousecDNAcloneprevi- retropositioneventandtheemergenceofmammals,thereten- ouslysequencedisnotpolyadenylateduntil202basesdown- tion of direct repeats is unlikely. There is the remnant of a stream.Twenty-fivebasesupstreamofthemousepoly(A)start poly(A)-like tail at the 39 end of the gene (Fig. 2B; 59- site is the sequence 59-UAUAAA, which is most likely the AATAAAAACAAACACCAAA), which, interestingly, de- poly(A)signalsequenceforthetranscript.Thepossibilitythat finespreciselythe39 borderofhomology betweenthemouse bothpoly(A)signalsequencesarefunctionalinthemouse,re- and human genes. Finally, Polg does have introns, but pre- sultingintranscriptsthatdifferinsizebyabout200bp,issup- sumably these wereadded afterthe retroposition event. For portedbytheexistenceoftwosimilarlysizedmRNAspecies some retroposons, tRNAs serve as primers for reverse tran- by Northern blotting of mouse heartRNA (Zhang et al ., in scription(Marquet etal .,1995).Inthatlight,itisinteresting press). thatthehighly conservedtRNA-Argsequenceconstitutesthe 59 borderofhomology betweenthemouseandhumangenes. However, the polarity of the tRNA-like element is opposite DISCUSSION what is expected for it to have functioned as a primer for retroposition.Furthermore,suchprimersareusuallydegraded, Here,wepresentthegenomicstructureofthemouse Polg whereasthissequenceremainsremarkablyintact.Overall,the gene,whichencodesthemitochondrialDNAPolg.Thisen- structureof Polg isconsistentwithadistantretropositionevent. zymeisrelatedtoprokaryoticDNApolymerases,theprototype ThetRNA-likesequencepresentatthe59 endofPolg pos- being PolI of E.coli (Ye etal .,1996). Allof theseproteins sessesfeaturesnecessary for transcriptionby PolIII, namely havepolymeraseactivity,aswellas39–59 exonucleolyticproof- boxesAandBintheDstem/loopandG-T-C-Cloop,respec- readingactivity.Eachdomainisencodedbythreeregionsof tively,andanoligo(T)terminationsignal.Theanticodon(UCG) conservedgenesequence(Lecrenier etal .,1997). isintact,asistheinvariantUatposition8.However,itdoes Because Polg waslikelyoriginallyencodedbytheearlymi- notcodetheknowntRNA-Argforeithermiceorhumans.Fur- tochondrial endosymbiont (Margulis,1970), itsnuclearloca- therworkisnecessarytotestthepossibilitythatthisisacod- tion may have arisen by retroposition. Such an event often inggenefortRNA-Arg. GENOMICSTRUCTURE OFMURINEPOLc 605

TheputativepromoterofPolg lacksthepromoterelements SCHULTZ, R.A., SWOAP, S.J., McDANIEL, L.D., ZHANG, B., commonlyseeninnucleargenesthatencodemitochondrialpro- KOON,E.C.,GARRY,D.J.,LI,K.,WILLIAMS,R.S.(1998).Dif- teins.Theabsenceoftheseelementsisconsistentwiththedata ferential expression of mitochondrial DNA replication factors in mammaliantissues.JBiolChem273, 3447–3451. ofSchultzandassociates,whoshowedthatPol g mRNAisnot SHARP, S., DEFRANCO, D., DINGERMANN, T., FARRELL, P., upregulatedbystimulithatincreasemitochondrialbiogenesis SOLL,D.(1981). Internal control regions fortranscription ofeu- butratherisconstitutivelyexpressedinalltissues(Schultz et karyotictRNAgenes.ProcNatlAcadSciUSA78, 6657–6661. al .,1998).Thus,thegenomicsequenceofPolg revealsagene SUZUKI,H.,HOSOKAWA,Y.,NISHIKIMI,M.,OZAWA,T.(1991). structureconservedfrommousetohuman,withfeaturescon- Existence of common homologous elements in the transcriptional sistentwithahousekeepingfunctionforPolg. regulatory regionsofhumannucleargenesandmitochondrial gene fortheoxidative phosphorylation system.JBiolChem 266, 2333– 2338. THOMPSON,J.D.,HIGGINS,D.G.,GIBSON,T.J.(1994).CLUSTAL ACKNOWLEDGMENTS W:Improvingthesensitivityofprogressivemultiplesequencealign- mentthroughsequenceweighting,position-specificgappenaltiesand This work was supported by grants to HPZ from the weightmatrixchoice.NucleicAcidsRes22, 4673–4680. Alzheimer’sAssociation,theAmericanHeartAssociation,and VOOS, W., MARTIN, H., KRIMMER, T., PFANNER, N. (1999). theAgingandtheHeart,Lung,andBloodInstitutesoftheNIH Mechanismsoftranslocationintomitochondria.BiochimBio- andagranttoJLMfromtheAmericanDiabetesAssociation. physActa1422, 235–254. WEINER, A.M., DEININGER, P.L., EFSTRATIADIS, A. (1986). Nonviral retroposons: Genes, , and transposable ele- mentsgenerated bythereverse flowofgenetic information. Annu REFERENCES RevBiochem 55, 631–661. YE,F.,CARRODEGUAS,J.A., BOGENHAGEN, D.F.(1996). The ALTSCHUL,S.F.,MADDEN,T.L.,SCHAFFER,A.A.,ZHANG,J., gammasubfamilyofDNApolymerases: Cloningofadevelopmen- ZHANG, Z., MILLER, W., and LIPMAN, D.J. (1997). Gapped tallyregulatedcDNAencoding Xenopuslaevis mitochondrial DNA BLAST and PSI-BLAST: A new generation of protein database polymerasegamma.NucleicAcidsRes 24, 1481–1488. searchprograms.NucleicAcidsRes25, 3389–3402. ZHANG,D.,MOTT,J.L.,CHANG,S.,DENNINGER,G.,FENG,Z., CHUNG,A.B.,STEPIEN,G.,HARAGUCHI,Y.,LI,K.,andWAL- ZASSENHAUS,H.P.(2000).Constructionoftransgenicmicewith LACE,D.C.(1992).Transcriptionalcontrolofnucleargenesforthe tissue-specificaccelerationofmitochondrialDNAmutagenesis.Ge- mitochondrial muscleADP/ATPtranslocatorandtheATPsynthase nomics69, inpress. betasubunit:MultiplefactorsinteractwiththeOXBOX/REBOXpro- ZULLO,S.J.,BUTLER,L.,ZAHORCHAK, R.J.,MACVILLE,M., motersequences.JBiolChem 267, 21154–21161. WILKES,C.,MERRIL,C.R.(1997). Localizationbyfluorescence EVANS,M.J.,andSCARPULLA,R.C.(1990). NRF-1:Atrans-acti- in situ hybridization (FISH) of human mitochondrial polymerase vator of nuclear-encoded respiratory genes in animal cells. Genes gamma(POLG)tohumanchromosome band15q24 R q26,andof Dev4,1023–1034. mouse mitochondrial polymerase gamma (Polg)tomouse chromo- LECRENIER,N.,VANDERBRUGGEN,P.,FOURY,F.(1997).Mi- someband7E,withconfirmationbydirectsequenceanalysisofbac- tochondrial DNApolymerases fromyeasttoman:Anewfamilyof terialartificial(BACs).CytogenetCellGenet78, 281– polymerases. Gene 185, 147–152. 284. LO,K.,andSMALE,S.T.(1996).Generalityofafunctionalinitiator consensus sequence. Gene 182, 13–22. Addressreprintrequeststo: MARGULIS,L.(1970).OriginofEukaryoticCells.(YaleUniversity Dr.H.PeterZassenhaus Press,NewHaven,CT). DepartmentofMolecularMicrobiologyand Immunology MARQUET, R., ISEL, C., EHRESMANN, C., EHRESMANN, B. St.LouisUniversityHealthSciencesCenter (1995). tRNAs as primer of reverse transcriptases. Biochimie 77, 1402 S.GrandBoulevard 113–124. St.Louis,MO63104 ROVIO,A.,TIRANTI,V.,BEDNARZ,A.L.,SUOMALAINEN,A., SPELBRINK,J.N.,LECRENIER,N.,MELBERG,A., ZEVIANI, M.,POULTON,J.,FOURY,F.,JACOBS,H.T.(1999).Analysisof E-mail: [email protected] the trinucleotide CAGrepeatfrom the human mitochondrial DNA polymerase gene in healthy and diseased individuals. Eur J Hum ReceivedJune6,2000;receivedinrevisedformandaccepted Genet7, 140–146. July19,2000.