Botanika – Steciana , , - ISSN -

Total Page:16

File Type:pdf, Size:1020Kb

Botanika – Steciana ��, ����, ��-�� ISSN ����-�� Roczniki Akademii Rolniczej w Poznaniu CCCXCII Botanika – Steciana , , - www.up.poznan.pl/steciana ISSN - NEW STATION OF POTAMOGETON ×SALICIFOLIUS WOLFG. IN NORTHEASTERN POLAND A P A. Pliszko, Department of Plant Taxonomy, Phytogeography and Herbarium, Jagiellonian University, Kopernika , - Kraków, Poland, e-mail: [email protected] (Received: April , . Accepted: June , ) ABSTRACT. Potamogeton ×salicifolius Wolfg., the hybrid between P. lucens L. and P. perfoliatus L., is re- corded from north-eastern Poland for the fi rst time. The new station is located in the Wigry Lake (the Wigry National Park), within FB square unit of the ATPOL cartogram grid. The distribution is updated with one new population of vegetative ramets. KEY WORDS: Potamogeton, hybrid, distribution, Wigry National Park, Poland INTRODUCTION TAXONOMICAL REMARKS Potamogeton ×salicifolius Wolfg. (Potamogetonace- Potamogeton ×salicifolius was originally described ae), willow-leaved pondweed is an established hybrid from Lithuania by J.F. Wolfgang in his unpublished between P. lucens L. and P. perfoliatus L., which oc- monograph in the beginning of the th century (K- curs mainly in the northern part of Europe (Ireland, and Z-G ). It is sterile hybrid the United Kingdom, Denmark, Sweden, France, the between two submerged broad-leaved homophyllous Netherlands, Switzerland, Germany, Poland, Lithuania, species of Potamogeton, which reproduces vegetatively Estonia and Russia). The distribution of the hybrid co- by rhizomes and stem fragmentation. Potamogeton ×sa- incides with the areas aff ected by the Late Pleistocene licifolius is generally intermediate, but may be confused glaciation, where the postglacial lakes occur (K with its parental species and P. ×nitens Weber. Pota- ). In the southern part of the European continent, mogeton ×salicifolius diff ers from P. lucens by having the hybrid is extremely rare, and has been recorded the leaves sessile and semi-amplexicaul, and with more only from Italy (K ). Both parental species longitudinal veins, and from P. perfoliatus by the leaves have wide ranges: P. lucens is confi ned to Europe, west- apiculate and slightly mucronate, with fewer veins, and ern and central Asia, northern and eastern Africa, and by delicate, but persistent stipules (Z-G P. perfoliatus is native to Europe, Asia, eastern North , K ). In contrast to P. ×salicifolius, P. America, northern and central Africa, and rarely occurs ×nitens has shorter stipules (without winged ribs), and in Australia and Central America (W and K- sometimes produces fl oating leaves and infl orescences. ). Potamogeton ×salicifolius is one of the most Some individuals of P. ×salicifolius resemble P. lucens frequent Potamogeton hybrids, especially in the United or P. ×nitens so closely that they can not be reliably dis- Kingdom (F and P ) and the North of tinguished by comparative morphology (P , European Russia (B and C ). It usu- Z-G , , ), and such cases ally occurs in lakes and rivers, together with one or need molecular analysis (F and P , K- both parents, as a component of the Potametea com- , B and S , K and munities. At some sites the hybrid dominates among F , ). The hybrid is highly variable, like the other pondweeds (B and S ). many Potamogeton taxa, and its morphological features All established and widespread Potamogeton hybrids can depend on the growing conditions (K ). are taxonomically and ecologically important, however, In fl owing waters P. ×salicifolius has long and narrow they are diffi cult for accurate identifi cation during the leaves, but in shallow ditches its leaves are shorter and fi eld studies (K ). almost as broad as long (P ). In Poland, the distribution of P. ×salicifolius is poorly Specimens of P. ×salicifolius found in the Wigry Lake recognised, because of the lack of herbarium materials are morphologically uniform and similar to P. lucens and misidentifi cation (Z-G ). A new rather than to P. perfoliatus. Moreover, all shoots are station of this interesting hybrid was found in the Wigry vegetative and short (less than cm long). Flowering Lake in August . specimens of the hybrid have not been observed in Po- land (Z-G ). A. Pliszko DISTRIBUTION IN POLAND were observed in the Gatno Lake in the Kaszuby Lake- AND NEW STATION land (Z-G ). The newly discovered population of the hybrid is small and consists of one Potamogeton lucens and P. perfoliatus have wide dis- cluster of vegetative ramets, occupying an area about tributions and high abundance in Poland, thus, hybridi- m². However, both parental species occur in the Wigry zation between them may occur frequently. However, Lake frequently and abundantly. In comparison with P. ×salicifolius has been hitherto reported from seven other Potamogeton hybrids occurring in Poland such as localities in north-western Poland, mostly from lakes P. ×angustifolius Bercht. & J. Presl ex Opiz and P. ×nitens (Z-G ). (Z-G ), the number of documented The new locality of the hybrid is situated in the stations of P. ×salicifolius is low. south-western part of the Wigry Lake, in the Wigierki Specimens collected from the new station were de- Bay, in the Wigry National Park. This is the fi rst docu- posited in the Herbarium of Jagiellonian University in mented station of P. ×salicifolius in north-eastern Po- Cracow (KRA). land (Fig. ). According to the ATPOL cartogram grid (Z ), the new locality is included in FB square Acknowledgements (cartogram unit km × km). The hybrid grows in I would like to thank MSc Maciej Romański from the shallow water of the littoral zone (about . m deep), Wigry National Park for his help during the fi eld survey. on sandy and silty sediments, together with one of its I am grateful to PhD habilitatus Joanna Zalewska-Gałosz parents, P. perfoliatus. The mesotrophic waters of the and PhD Alexander A. Bobrov for verifi cation of Pota- Wigry Lake in this place are threatened by eutrophica- mogeton ×salicifolius specimens. I also thank the two tion (K et . ). Similar habitat conditions anonymous reviewers for their helpful comments. F. Distribution map of Potamogeton ×salicifolius Wolfg. in Poland according to the ATPOL cartogram units ( km × km): ○ – documented localities (Z-G ), ● – new locality New station of Potamogeton ×salicifolius Wolfg. in north-eastern Poland REFERENCES K Z., Z-G J. (): Potamogeton taxa proposed by J.F. Wolfgang and his collaborators. B A.A., C E.V. (): Pondweeds (Pota- Taxon , : -. mogeton, Potamogetonaceae) in river ecosystems in K M., G A., C A. (): the North of European Russia. Dokl. Biol. Sci. : Struktura zespołów zooplanktonu skorupiakowe- -. go oraz ocena aktualnej trofi i jeziora Wigry. Rocz. B A.A., S A.A. (): Morphological and Augustowsko-Suwalski : -. molecular confi rmation of the hybrid Potamogeton P C.D. (): Pondweeds of Great Britain and ×salicifolius (P. lucens × P. perfoliatus, Potamogeto- Ireland. Botanical Society of the British Isles, B. S. naceae) in Upper Volga region (Russia). Komarovia B. I. Handbook , London. , : -. W G., K Z. (): An account of the spe- F J.B., P C.D. (): Genetic structure and cies of Potamogeton L. (Potamogetonaceae). Folia morphological variation of British populations of the Geobot. , : -. Z A. (): Atlas of distribution of vascular plants hybrid Potamogeton ×salicifolius. Bot. J. Linn. Soc. in Poland (ATPOL). Taxon , -: -. , : -. Z-G J. (): Occurrence and distribu- K Z. (): Phenotypic plasticity in Potamogeton tion of Potamogeton hybrids (Potamogetonaceae) in (Potamogetonaceae). Folia Geobot. , : -. Poland. Feddes Repert. , -: -. K Z. (): First record of Potamogeton ×sali- Z-G J. (): Remarks on Potamogeton cifolius for Italy, with isozyme evidence for plants hybrids based on characters of P. ×salicifolius Wolfg. collected in Italy and Sweden. Plant Biosyst. , : from a new locality in Poland. Acta Soc. Bot. Pol. , -. : -. K Z. (): Hybridization of Potamogeton spe- Z-G J. (): Rodzaj Potamogeton L. cies in the Czech Republic: diversity, distribution, w Polsce – taksonomia i rozmieszczenie. Instytut temporal trends and habitat preferences. Preslia , Botaniki Uniwersytetu Jagiellońskiego, Kraków. : -. K Z., F J. (): Erroneous identities of Po- tamogeton hybrids corrected by molecular analysis of For citation: Pliszko A. (): New station of Potamoge- plants from type clones. Taxon , : -. ton ×salicifolius Wolfg. in north-eastern Poland. Rocz. AR K Z., F J. (): Molecular identifi cation Pozn. , Bot. Stec. : -. of hybrids from a former hot spot of Potamogeton hybrid diversity. Aquat. Bot. : -..
Recommended publications
  • Morpho-Chronological Variations and Primary Production in Posidonia
    Morpho-chronological variations and primary production in Posidonia sea grass from Western Australia Gérard Pergent, Christine Pergent-Martini, Catherine Fernandez, Pasqualini Vanina, Diana Walker To cite this version: Gérard Pergent, Christine Pergent-Martini, Catherine Fernandez, Pasqualini Vanina, Diana Walker. Morpho-chronological variations and primary production in Posidonia sea grass from Western Aus- tralia. Journal of the Marine Biological Association of the United Kingdom, Cambridge University Press, 2004, 84 (5), pp.895-899. 10.1017/S0025315404010161h. hal-01768985 HAL Id: hal-01768985 https://hal.archives-ouvertes.fr/hal-01768985 Submitted on 17 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Mar. Biol. Ass. U.K. (2004), 84, 895^899 Printed in the United Kingdom Morpho-chronological variations and primary production in Posidonia sea grass from Western Australia P Ge¤rard Pergent* , Christine Pergent-Martini*, Catherine Fernandez*, O Vanina Pasqualini* and Diana Walker O *Equipe Ecosyste' mes Littoraux, Faculty of Sciences,
    [Show full text]
  • Redalyc.Mortality Rate Estimation for Eelgrass Zostera Marina
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Flores Uzeta, Olga; Solana Arellano, Elena; Echavarría Heras, Héctor Mortality rate estimation for eelgrass Zostera marina (Potamogetonaceae) using projections from Leslie matrices Revista de Biología Tropical, vol. 56, núm. 3, septiembre, 2008, pp. 1015-1022 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44918834004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mortality rate estimation for eelgrass Zostera marina (Potamogetonaceae) using projections from Leslie matrices Olga Flores Uzeta, Elena Solana Arellano & Héctor Echavarría Heras Departamento de Ecología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, Baja California México, P.O. Box 430222, San Diego, CA. 92143-0222, USA.Fax: (646) 175 05 00; oflores@cicese. mx; [email protected]; [email protected] Received 28-VIII-2006. Corrected 30-VI-2008. Accepted 31-VII-2008. Abstract: The main goal of this study is to provide estimations of mean mortality rate of vegetative shoots of the seagrass Zostera marina in a meadow near Ensenada Baja California, using a technique that minimizes destruc- tive sampling. Using cohorts and Leslie matrices, three life tables were constructed, each representing a season within the period of monthly sampling (April 1999 to April 2000). Ages for the cohorts were established in terms of Plastochrone Interval (PI).
    [Show full text]
  • Potamogeton Hillii Morong Hill's Pondweed
    Potamogeton hillii Morong Hill’sHill’s pondweed pondweed, Page 1 State Distribution Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State threatened 1980’s. The type locality for this species, in Manistee County, has been destroyed. Global and state rank: G3/S2 Recognition: The stem of this pondweed is slender Other common names: pondweed and much branched, reaching up to 1 m in length. The alternate leaves are all submersed, and very narrow Family: Potamogetonaceae (pondweed family) (0.6-2.5 mm), ranging from 2-6 cm in length. The leaves are characterized by having three parallel veins Synonyms: Potamogeton porteri Fern. and a short bristle tip. The stipules are relatively coarse and fibrous (shredding when old) and are free Taxonomy: An extensive molecular analysis of the from each other and the leaf stalk bases. Short Potamogetonaceae, which largely corroborates the (5‑15 cm), curved fruiting stalks (peduncles) are separation of broad-leaved versus narrow-leaved terminated by globose flower/fruit clusters that pondweed species, is provided by Lindqvist et al. arise from leaf axils or stem tips. The tiny (2-4 mm) (2006). fruits have ridges along the backside. Other narrow- leaved species that lack floating leaves have either Range: This aquatic plant is rare throughout much of narrower leaves ( less than 0.5 mm in width, such as its range, which extends from Vermont to Michigan, and P. confervoides and P. bicupulatus), stipules that are south to Pennsylvania. Centers of distribution appear attached near their bases (P. foliosus, P. pusillus), to be in western New England and the north central longer peduncles (1.5-4 mm) (P.
    [Show full text]
  • Plant Fact Sheet for Sago Pondweed Can Also Be Stored in Water at Low Temperatures Or Packed (Stuckenia Pectinata (L.) Böerner)
    Plant Fact Sheet SAGO PONDWEED Uses Wildlife: Waterfowl extensively use and rely on sago Stuckenia pectinata (L.) Böerner pondweed as a food source. The whole plant can be Plant Symbol = STPE15 consumed, and parts are utilized by diving, dabbling, whistling ducks, many types of geese, swans, coots and Contributed by: USDA NRCS Kansas Plant Materials the long-billed dowitchers. Center, Manhattan, Kansas Bioremediation and bioindication: May be used to suppress phytoplankton blooms by taking up phosphorus from the water and to monitor heavy metal pollution in rivers. Erosion control: The wave dampening action of sago pondweed can be used for erosion control of shores and dams. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Sago pondweed is an obligate wetland species. Weediness This plant may become weedy or invasive in some regions or habitats and may displace desirable vegetation if not properly managed. Please consult with your local NRCS Field Office, Cooperative Extension Service office, state natural resource, or state agriculture department regarding its status and use. Weed information is also available from the PLANTS Web site at http://plants.usda.gov. Please consult the Related Web Sites on the Plant Profile for this species for further Figure 1. Sago pondweed. Robert H. Mohlenbrock. USDA NRCS. 1992. information. Sago pondweed is considered a nuisance Western wetland flora: Field office guide to plant species. West Region, Sacramento. Courtesy of USDA NRCS Wetland Science Institute. weed or noxious weed in some waters that are used for recreational purposes and in irrigation canals.
    [Show full text]
  • Vascular Plant Families of the United States Grouped by Diagnostic Features
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-6-2019 Vascular Plant Families of the United States Grouped by Diagnostic Features James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plant Families of the United States Grouped by Diagnostic Features" (2019). Botanical Studies. 96. https://digitalcommons.humboldt.edu/botany_jps/96 This Flora of the United States and North America is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF THE UNITED STATES GROUPED BY DIAGNOSTIC FEATURES James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Second edition — 6 December 2019 The focus is on families of plants found in the conterminous United States, including ornamentals. The listing of a family is not meant to imply that every species has that feature. I am using a fewfamily names, such as Liliaceae, Plantaginaceae, and Scrophulariaceae, in the traditional sense, because their limits remain unsettled. Parasitic on branches Dioscoreaceae
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • Sago Pondweed Stuckenia Pectinata* Native to the Chesapeake Bay
    Maryland DepartmentofNatural Resources Sago pondweed Stuckenia pectinata* Native to the Chesapeake Bay Family - Potamogetonaceae Distribution - Sago pondweed is widely distributed in the United States, South America, Europe, Africa and Japan. In Chesapeake Bay, sago pondweed is widespread growing in fresh non-tidal to moderately brackish waters. It can tolerate high alkalinity and grows on silty- muddy sediments. It tolerates strong currents and wave action better than most SAV because of its long rhizomes and runners. Recognition - Thread-like leaves are 3 to 10 cm (1 ¼ in to 4 in) long, and 0.5 to 2 mm (1/32 in to 1/16 in) wide, and taper to a point. The basal sheath of leaves sometimes has a pointed tip or bayonet that aids in identification when plants are not in flower. Seeds form in terminal clusters. Stems are slender, and abundantly branched so that bushy leaf clusters fan out at the water surface. Roots have slender rhizomes, and are long and straight. Ecological Significance - Sago pondweed is widespread throughout the United States and is considered one of the most valuable food sources for waterfowl in North America. Its highly nutrient seeds and tubers, as well as leaves, stems and roots, are consumed by numerous species of ducks, geese, swans and marsh and shorebirds. Reproduction - Reproduction is by seed formation and asexual Similar Species - Horned pondweed (Zanichellia palustris) and reproduction. Sexual reproduction occurs during early summer by widgeon grass (Ruppia maritima) have a very similar appearance to formation of a spike of perfect flowers that appear like beads on the sago pondweed and are difficult to identify without fruits.
    [Show full text]
  • The Genus Ruppia L. (Ruppiaceae) in the Mediterranean Region: an Overview
    Aquatic Botany 124 (2015) 1–9 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: An overview Anna M. Mannino a,∗, M. Menéndez b, B. Obrador b, A. Sfriso c, L. Triest d a Department of Sciences and Biological Chemical and Pharmaceutical Technologies, Section of Botany and Plant Ecology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy b Department of Ecology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain c Department of Environmental Sciences, Informatics & Statistics, University Ca’ Foscari of Venice, Calle Larga S. Marta, 2137 Venice, Italy d Research Group ‘Plant Biology and Nature Management’, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium article info abstract Article history: This paper reviews the current knowledge on the diversity, distribution and ecology of the genus Rup- Received 23 December 2013 pia L. in the Mediterranean region. The genus Ruppia, a cosmopolitan aquatic plant complex, is generally Received in revised form 17 February 2015 restricted to shallow waters such as coastal lagoons and brackish habitats characterized by fine sediments Accepted 19 February 2015 and high salinity fluctuations. In these habitats Ruppia meadows play an important structural and func- Available online 26 February 2015 tional role. Molecular analyses revealed the presence of 16 haplotypes in the Mediterranean region, one corresponding to Ruppia maritima L., and the others to various morphological forms of Ruppia cirrhosa Keywords: (Petagna) Grande, all together referred to as the “R. cirrhosa s.l. complex”, which also includes Ruppia Aquatic angiosperms Ruppia drepanensis Tineo.
    [Show full text]
  • Potamogeton Crispus L
    Weed Risk Assessment for Michigan Department Potamogeton crispus L. of Agriculture and (Potamogetonaceae) – Curly leaf Rural Development pondweed May 10, 2016 Version 1 Top left: growth form (Leslie J. Mehrhoff, University of Connecticut, Bugwood.org), bottom left: P. crispus infestation (Chris Evans, University of Illinois, Bugwood.org), right: foliage close up with view of air bladders (Chris Evans, University of Illinois, Bugwood.org). Agency Contact : Cecilia Weibert Pesticide and Plant Pest Management Division Michigan Department of Agriculture and Rural Development P.O. Box 30017 Lansing, Michigan 48909 Telephone: 1-800-292-3939 Weed Risk Assessment for Potamogeton crispus Introduction The Michigan Department of Agriculture and Rural Development (MDARD) regulates aquatic species through a Prohibited and Restricted species list, under the authority of Michigan’s Natural Resources and Environmental Protection Act (NREPA), Act 451 of 1994, Part 413 (MCL 324.41301-41305). Prohibited species are defined as species which “(i) are not native or are genetically engineered, (ii) are not naturalized in this state or, if naturalized, are not widely distributed, and further, fulfill at least one of two requirements: (A) The organism has the potential to harm human health or to severely harm natural, agricultural, or silvicultural resources and (B) Effective management or control techniques for the organism are not available.” Restricted species are defined as species which “(i) are not native, and (ii) are naturalized in this state, and one or more of the following apply: (A) The organism has the potential to harm human health or to harm natural, agricultural, or silvicultural resources. (B) Effective management or control techniques for the organism are available.” Per a recently signed amendment to NREPA (MCL 324.41302), MDARD will be conducting reviews of all species on the lists to ensure that the lists are as accurate as possible.
    [Show full text]
  • Curlyleaf Pondweed (Potamogeton Crispus L.) Angela Poovey FISH
    Curlyleaf pondweed (Potamogeton crispus L.) Angela Poovey FISH 423 Fall 2008 1. Diagnostic information Basic identification key Class Liliopsida – Monocotyledons Curlyleaf pondweed (Potamogeton Subclass Alismatidae crispus L.) is a rooted submersed macrophyte that grows in freshwater lakes, ponds, rivers, and Order Najadales streams. It may be found in slightly brackish Family Potamogetonaceae – waters (Catling and Dobson 1985). It grows Pondweed family entirely underwater except for the flower stalk Genus Potamogeton – pondweed which rises above the water (WA-DOE 2001). Species crispus – curlyleaf Although most pondweeds exhibit plasticity, in pondweed which the appearance of the same species may vary depending on growing conditions, curlyleaf Common names pondweed is easily identified. It has olive-green curlyleaf pondweed, curly-leaved pondweed, to reddish-brown leaves (Figure 1). Leaves are curly pondweed, crisp pondweed, or curly attached to narrow slightly flattened stems in an muckweed alternate pattern. They are oblong (3-8 cm long, Figure 1. A stand of mature curlyleaf pondweed plants (left) and a plant stem (upper right). Note reddish-brown tinge with red midvein. Leaves have wavy edges and fine serrations (lower right). 5-12 mm wide) with margins that are distinctly Life-history and basic ecology wavy and finely serrated creating an overall leaf texture that is “crispy” (Borman et al. 1997). The cool water adaptations of curlyleaf Stems are branched and somewhat flattened; pondweed set it apart from other aquatic plants. they grow up to 90 cm (WA-DOE 2001). It survives as an entire plant under the ice Curlyleaf pondweed may be confused with (Wehrmeister and Stuckey 1992) while most Richardson’s pondweed (P.
    [Show full text]
  • New Distributional Record of Stuckenia Pectinata (L.) Borner in Union Territory of Chandigarh, India
    Journal on New Biological Reports ISSN 2319 – 1104 (Online) JNBR 7(1) 10 – 14 (2018) Published by www.researchtrend.net New Distributional Record of Stuckenia pectinata (L.) Borner in Union Territory of Chandigarh, India Malkiat Chand Sidhu, Shweta Puri and Amrik Singh Ahluwalia Department of Botany, Panjab University, Chandigarh, 160014 *Corresponding author: [email protected] | Received: 27 December 2017 | Accepted: 14 February 2018 | ABSTRACT Stuckenia pectinata has been reported for the first time from Sukhna Wetland, Chandigarh, India. It belongs to family Potamogetonaceae and has few morphological variants. It is a filiform, submerged, perennial and aquatic plant. Different plant parts are important as a source of food for many water fowls. It is believed that this species possibly has reached at the present study site through migratory birds. Key words: Aquatic species, Stuckenia pectinata, Potamogetonaceae, Sukhna, Wetland. INTRODUCTION polluted conditions. It may likely be the reason for its wider adaptability in different water bodies. Stuckenia pectinata (L.) Borner (syn. Potamogeton Both seeds and tubers help the plants to pectinatus) is species of genus Stuckenia. It is survive in winters (Yeo 1965; Hangelbroek et al. commonly called as „Sago pondweed‟ or „Fennel 2003). These are also the main source of dispersal weed‟ and distributed throughout the world. It is and important food for waterfowls due to their submerged macrophyte, occurring in a variety of nutritional value. Leaves, stems and roots are also habitats including eutrophic, stagnant to running consumed by ducks and water fowls. This plant not water and in different types of ditches, lakes, ponds only protects fishes, grass carp and invertebrates and rivers (Hulten & Fries 1986; Wiegleb & from predators but also provides a place for them to Kaplan 1998).
    [Show full text]
  • A Synopsis of Zannichellia L. (Potamogetonaceae) in Iran
    IRANIAN JOURNAL OF BOTANY 25 (2), 2019 DOI: 10.22092/ijb.2019.128488.1263 A SYNOPSIS OF ZANNICHELLIA L. (POTAMOGETONACEAE) IN IRAN Sh. Abbasi, S. Afsharzadeh & M. Dinarvand Received 2019. 11. 20; accepted for publication 2019. 12. 10 Abbasi, Sh., Afsharzadeh, S. & Dinarvand, M. 2019. 12. 30: A synopsis of Zannichellia L. (Potamogetonaceae) in Iran. -Iran. J. Bot. 25 (2): 103-114. Tehran. Zannichellia L. (Potamogetonaceae) is a cosmopolitan genus widely distributed in aquatic ecosystems of Iran. The last taxonomic treatment of this genus dates back to 1971 in Flora Iranica, with some recent modifications in Flora of Iran. This research aimed to provide a new taxonomic treatment of Zannichellia in Iran based on distributional, morphological, and molecular studies (using ITS, PHYB, trnH-psbA and rpl32-trnL molecular markers). In this research, one species (Zannichellia palustris) with two varieties is distinguished. An identification key to varieties is presented and descriptions of them are provided. A distribution map of the genus in Iran is compiled. The distribution is concentrated in northern, central and southwestern parts of Iran. Shabnam Abbasi, Saeed Afsharzadeh (correspondence <[email protected]>), Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. -Mehri Dinarvand, Forests and Rangelands Research Division, Khuzestan Agricultural and Natural Resources Research and Education Center, Ahvaz, Agricultural Research Education and Extension Organization (AREEO),
    [Show full text]