James Clerk Maxwell and the Physics of Sound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematical Tripos 2020/2021 Guide to Courses in Part Ia
MATHEMATICAL TRIPOS 2021/2022 GUIDE TO COURSES IN PART IA This booklet provides an introduction for new students, giving an outline of the first year with informal and non-technical descriptions of the courses. It is intended to supplement the more formal descriptions contained in the booklet Schedules of Lecture Courses and Form of Examinations. These and other Faculty documents for students taking the Mathematical Tripos are available from http://www.maths.cam.ac.uk/undergrad/ Revised 6th September 2021 1 Introduction The Mathematical Tripos consists of Parts IA, IB and II, taken in successive years, with an optional fourth year, Part III, taken by students who do sufficiently well. Those who successfully complete three years are eligible to graduate with a BA honours degree, while those who go on to complete the additional fourth year graduate with both BA honours and MMath degrees. Unlike many degree courses, the Mathematical Tripos is not modular (at least in its first three years). It is tightly structured, with no choice in the first year, some choice in the second year, and a very wide choice in the third year. The examinations (especially in the second and third years) are cross-sectional, meaning that instead of each lecture course having a dedicated examination paper, each examination paper has questions on many lecture courses. The flexibility that this allows students is considered by the Faculty to be one of the great strengths of the Tripos. This booklet provides an introduction for new students, with an outline of Part IA and informal descrip- tions of the courses. -
James Clerk Maxwell
James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Sir James Alfred Ewing, K.C.B., M.A., D.Sc, LL.D., F.R.S
150 Obituary Notices. Sir James Alfred Ewing, K.C.B., M.A., D.Sc, LL.D., F.R.S. JAMES ALFRED EWING, a great engineer, scientific man, and charming Scot, was distinguished in many fields of activity. Born in 1855 at Dundee, where his father was a minister of the Free Church of Scotland, he grew up in an intellectual and spiritual atmosphere in which his early education was greatly influenced by his mother, whose critical taste in letters was passed on to her children. From Dundee High School Ewing proceeded in the early seventies to the University of Edinburgh, where his great ability soon manifested itself in the classes of Tait and Fleeming Jenkin, the latter of whom brought him into touch with Sir William Thomson (afterwards Lord Kelvin), then engaged in the development of submarine telegraph cables, an introduction which led to Ewing taking part in three cable-laying voyages to Brazil and the River Plate. Fleeming Jenkin was a man of wide culture, and his literary and scientific circle included Ewing and another young student, Robert Louis Stevenson, then at the commence- ment of an engineering training, soon to be abandoned for a literary career of the greatest distinction, the beginnings of which have been happily described by Ewing in "The Fleeming Jenkins and Robert Louis Steven- son." In 1878, at the early age of twenty-three, Ewing went to Japan as Professor of Mechanical Engineering in the University of Tokyo, a post which he occupied for five years, and there he made his classical researches in the widely different fields of magnetism and seismology. -
Sess. Professor Andrew Jamieson, M.Inst
334 Proceedings of the Royal Society of Edinburgh. [Sess. Professor Andrew Jamieson, M.Inst.C.E. By Mr J. Wilson. (Read January 20, 1913.) PROFESSOR JAMIESON, M.Inst.C.E., whose death took place on the 4th December 1912, at his residence, 16 Rosslyn Terrace, Kelvinside, Glasgow, W., was well known throughout the country as a consulting engineer and as the author of a large number of standard text-books on electrical and engineering subjects. He was elected to the Fellowship of the Royal Society of Edinburgh in 1882. Professor Jamieson, who was the eldest son of the late Rev. George Jamieson, D.D., of Old Machar Cathedral, Aberdeen, was born at Grange, Banffshire, in 1849, and received his education at the Gymnasium, Old Aberdeen, and at Aberdeen University. His apprenticeship was served with Messrs Hall, Russel & Co., marine engineers and shipbuilders, Aberdeen Ironwork. He afterwards entered the service of the Great North of Scotland Railway Company, ultimately attaining the position of chief draughtsman in the loco, and carriage department. When only twenty-three years of age he was appointed assistant to Sir William Thomson (Lord Kelvin) and Professor Fleeming Jenkin, who placed him in charge of the testing staff, to supervise the manufacture of the submarine cables at the Woolwich works of Messrs Siemens Bros. Then followed several years during which Mr Jamieson was mostly abroad. For two years he acted as chief electrical assistant to Thomson and Jenkin, along the coast of Brazil, for the Western Brazilian, and Platino-Brazilian Companies. On returning to this country, the late Sir John Pender and Sir James Anderson appointed him chief electrician to the Eastern Telegraph Company, and he was sent to the Mediterranean to super- intend the laying of the Marseilles-Malta cable. -
Courses in Part Ib of the Mathematical Tripos
UNIVERSITY OF CAMBRIDGE Faculty of Mathematics COURSES IN PART IB OF THE MATHEMATICAL TRIPOS This document contains a list of all the courses which are examinable in Part IB of the Mathematical Tripos together with an informal description of each course and suggestions for preliminary reading. A formal syllabus is given in the booklet Schedules for the Mathematical Tripos. which can be obtained from the Faculty Office, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (telephone: 01223 337968; e-mail: [email protected]). All the documentation (including Schedules for the Mathematical Tripos) is available on the WWW (http://www.maths.cam.ac.uk/). June 2, 2004 READ ME Five changes have been implemented for 2004/05. They are as follows. There are two new courses, • { Complex Analysis, which will be lectured in the Lent Term and examined in Part IB, May/June 2005. This will run in parallel to Complex Methods, and it is expected that students with mainly pure mathematical interests will take Complex Analysis and students with mainly ap- plied mathematical interests will take Complex Methods. However, the courses are timetabled so that you could attend both courses. A total of four questions will be set in the examination on the two courses, two of which will be on material common to both courses. { The Geometry course has been replaced by a 16-lecture Geometry course given in the Lent term. Topological and Metric Spaces, which was lectured in the Easter term 2004, will be examined for • the first time in Part IB, May/June 2005. -
A Beautiful Approach: Transformational Optics
A beautiful approach: “Transformational optics” [ several precursors, but generalized & popularized by Ward & Pendry (1996) ] warp a ray of light …by warping space(?) [ figure: J. Pendry ] Euclidean x coordinates transformed x'(x) coordinates amazing Solutions of ordinary Euclidean Maxwell equations in x' fact: = transformed solutions from x if x' uses transformed materials ε' and μ' Maxwell’s Equations constants: ε0, μ0 = vacuum permittivity/permeability = 1 –1/2 c = vacuum speed of light = (ε0 μ0 ) = 1 ! " B = 0 Gauss: constitutive ! " D = # relations: James Clerk Maxwell #D E = D – P 1864 Ampere: ! " H = + J #t H = B – M $B Faraday: ! " E = # $t electromagnetic fields: sources: J = current density E = electric field ρ = charge density D = displacement field H = magnetic field / induction material response to fields: B = magnetic field / flux density P = polarization density M = magnetization density Constitutive relations for macroscopic linear materials P = χe E ⇒ D = (1+χe) E = ε E M = χm H B = (1+χm) H = μ H where ε = 1+χe = electric permittivity or dielectric constant µ = 1+χm = magnetic permeability εµ = (refractive index)2 Transformation-mimicking materials [ Ward & Pendry (1996) ] E(x), H(x) J–TE(x(x')), J–TH(x(x')) [ figure: J. Pendry ] Euclidean x coordinates transformed x'(x) coordinates J"JT JµJT ε(x), μ(x) " ! = , µ ! = (linear materials) det J det J J = Jacobian (Jij = ∂xi’/∂xj) (isotropic, nonmagnetic [μ=1], homogeneous materials ⇒ anisotropic, magnetic, inhomogeneous materials) an elementary derivation [ Kottke (2008) ] consider× -
The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy
Advances in Historical Studies, 2017, 6, 18-39 http://www.scirp.org/journal/ahs ISSN Online: 2327-0446 ISSN Print: 2327-0438 The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy Roberto Mantovani Department of Pure and Applied Sciences (DiSPeA), Physics Laboratory: Urbino Museum of Science and Technology, University of Urbino Carlo Bo, Urbino, Italy How to cite this paper: Mantovani, R. Abstract (2017). The Otranto-Valona Cable and the Origins of Submarine Telegraphy in Italy. This work is born out of the accidental finding, in a repository of the ancient Advances in Historical Studies, 6, 18-39. “Oliveriana Library” in the city of Pesaro (Italy), of a small mahogany box https://doi.org/10.4236/ahs.2017.61002 containing three specimens of a submarine telegraph cable built for the Italian Received: December 22, 2016 government by the Henley Company of London. This cable was used to con- Accepted: March 18, 2017 nect, by means of the telegraph, in 1864, the Ports of Otranto and Avlona (to- Published: March 21, 2017 day Valona, Albania). As a scientific relic, the Oliveriana memento perfectly fits in the scene of that rich chapter of the history of long distance electrical Copyright © 2017 by author and Scientific Research Publishing Inc. communications known as submarine telegraphy. It is known that, thanks to This work is licensed under the Creative the English, the issue of submarine electric communication had an impressive Commons Attribution International development in Europe from the second half of the nineteenth century on. License (CC BY 4.0). Less known is the fact that, in this emerging technology field, Italy before uni- http://creativecommons.org/licenses/by/4.0/ fication was able to carve out a non-negligible role for itself, although primar- Open Access ily political. -
UTO in Biological Physics
University of Cambridge Department of Applied Mathematics and Theoretical Physics University Lectureship in Biological Physics Applications are invited for a University Lectureship in Biological Physics to be held in the Department of Applied Mathematics and Theoretical Physics (DAMTP). Candidates should have an outstanding record of theoretical research in biological physics or related areas. The successful candidate will be expected to carry forward a programme of research in biological physics, involving the application of physical principles and mathematical techniques to the understanding of living systems and ideally, have a strong interaction with experimental research. We welcome applications from those working in areas such as biological fluid dynamics and biomechanics, as well as, for example, physical aspects of development, evolution and ecology. The post is part of an on-going cross-departmental effort in Cambridge to promote connections between the physical, mathematical and life sciences. The successful applicant will join a substantial and growing research effort within DAMTP in biological physics and mathematical biology. For more information about this research see: http://www.damtp.cam.ac.uk/research The position University Lecturer is one of four grades of academic post at the University of Cambridge, the others being Senior Lecturer, Reader and Professor. Rapid promotion through the grades is possible for candidates whose achievements merit this. A University Lectureship in Cambridge is roughly equivalent to an Associate Professorship in the US. The person appointed will be required to contribute to teaching, examining and administration and to research, including the supervision of graduate students and generation of research funding. So far as formal lecturing is concerned, the average load in DAMTP is some 40 hours per year, typically one undergraduate course and one graduate-level course. -
Weldon's Search for a Direct Proof of Natural Selection and the Tortuous
GENERAL ARTICLE Weldon’s Search for a Direct Proof of Natural Selection and the Tortuous Path to the Neo-Darwinian Synthesis Amitabh Joshi WFRWeldonfirst clearly formulated the principles of nat- ural selection in terms of what would have to be observed in natural populations in order to conclude that natural selec- tion was, indeed, acting in the manner proposed by Darwin. The approach he took was the statistical method developed by Galton, although he was closer to Darwin’s conception of selection acting on small individual variations than Galton Amitabh Joshi studies and teaches evolutionary biology was. Weldon, together with Karl Pearson, who supplied the and population ecology at statistical innovations needed to infer the action of selection JNCASR, Bengaluru. He also from populational data on trait distributions, laid the founda- has serious interests in poetry, tions of biometry and provided the first clear evidence of both history and philosophy, especially the history and stabilizing and directional selection in natural populations. philosophy of genetics and To fully appreciate W F R Weldon’s contribution to evolution- evolution. ary biology, it is necessary to understand the state of the subject around the time he was embarking upon an academic life as a re- searcher in 1882. It is often believed that between the publication of Charles Darwin’s Origin of Species in 1859, and the welding together of Mendelian genetics and the principle of natural selec- tion in the Neo-Darwinian Synthesis of the 1930s, there was a smooth progression of evolutionary thinking towards the elabo- ration of Darwin’s well-received thoughts. -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
The English-Speaking Aristophanes and the Languages of Class Snobbery 1650-1914
Pre-print of Hall, E. in Aristophanes in Performance (Legenda 2005) The English-Speaking Aristophanes and the Languages of Class Snobbery 1650-1914 Edith Hall Introduction In previous chapters it has been seen that as early as the 1650s an Irishman could use Aristophanes to criticise English imperialism, while by the early 19th century the possibility was being explored in France of staging a topical adaptation of Aristophanes. In 1817, moreover, Eugene Scribe could base his vaudeville show Les Comices d’Athènes on Ecclesiazusae. Aristophanes became an important figure for German Romantics, including Hegel, after Friedrich von Schlegel had in 1794 published his fine essay on the aesthetic value of Greek comedy. There von Schlegel proposed that the Romantic ideals of Freedom and Joy (Freiheit, Freude) are integral to all art; since von Schlegel regarded comedy as containing them to the highest degree, for him it was the most democratic of all art forms. Aristophanic comedy made a fundamental contribution to his theory of a popular genre with emancipatory potential. One result of the philosophical interest in Aristophanes was that in the early decades of the 18th century, until the 1848 revolution, the German theatre itself felt the impact of the ancient comic writer: topical Lustspiele displayed interest in his plays, which provided a model for German poets longing for a political comedy, for example the remarkable satirical trilogy Napoleon by Friedrich Rückert (1815-18). This international context illuminates the experiences undergone by Aristophanic comedy in England, and what became known as Britain consequent upon the 1707 Act of Union. -
Sir JJ Thomson
Cambridge University Press 978-1-107-67095-2 - James Clerk Maxwell: A Commemoration Volume 1831-1931 Sir J. J. Thomson, Max Planck, Albert Einstein, Sir Joseph Larmor, Sir James Jeans, William Garnett, Sir Ambrose Fleming, Sir Oliver Lodge, Sir R. T. Glazebrook and Sir Horace Lamb Excerpt More information JAMES CLERK MAXWELL BY Sir J. J. Thomson WEare met to celebrate ihe centenary of one whose work has had a profound influence on the progress and conceptions of Physical Science; it has moreover been instrumental in harnessing the ether for the service of man and has thereby ad vanced civilization and increased the safety and happiness of mankind. Maxwell came of a race, the Clerks of Penycuik in Midlothian, who for two centuries had been promi nent in the social life of Scotland; each generation had been remarkable for the talents and accom plishments of some of its members; one of these, Will Clerk, was the intimate friend of Sir Walter Scott and the original of the Darsie Lattimer of Redgauntlet. As a race they were remarkable, like Maxwell himself, for strong individuality. John Clerk Maxwell, Maxwell's father, had added the name of Maxwell to that of Clerk on inheriting the small estate of Middlebie in Dumfriesshire. His main characteristic according to Lewis Campbell eM © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-67095-2 - James Clerk Maxwell: A Commemoration Volume 1831-1931 Sir J. J. Thomson, Max Planck, Albert Einstein, Sir Joseph Larmor, Sir James Jeans, William Garnett, Sir Ambrose Fleming, Sir Oliver Lodge, Sir R.