Using Panel Data Analysis to Define Most Global Warming Characteristic
Total Page:16
File Type:pdf, Size:1020Kb
Al-Azhar University-Gaza Deanship of Postgraduate Studies Faculty of Economics and Administrative Sciences Department of Applied Statistic Using Panel Data Analysis To Define Most Global Warming Characteristic استخدام تحليل السﻻسل الزمنية المقطعية في التعريف بعوامل ارتفاع حرارة اﻻرض by Mohammed Ismail Ramadan Khader Supervisor Prof. Dr. Abdalla El-Habil Professor of Statistics A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Applied Statistic 2018 II DECLARATION I, the undersigned hereby, declare that the thesis titled: Using Panel Data Analysis To Define Most Global Warming Characteristic استخدام تحليل السﻻسل الزمنية المقطعية في التعريف بعوامل ارتفاع حرارة اﻻرض Is my own research work and the work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has never been submitted elsewhere for any other degree qualifications nor for any academic titles, nor for any other academic or publishing institutions. I, hereto, affirm that I will be completely responsible in academic and legal terms if this work proves the opposite. Student's name: Mohammed Ismail Ramadan Khader Signature: Mohammed Ismail Ramadan Khader Date: 6 / 11 / 2018 III بسم اهلل الرمحن الرحيم ( أَحَسِبَ النَّاسُ أَنْ يُتْرَكُوا أَنْ يَقُولُوا آمَنَّا وَهُمْ ﻻ يُفْتَنُونَ ) )سورة العنكبوث: اﻷيت 2( IV TO MY PARENTS and My family V ACKNOWLEDGEMENTS First, i would like to express my sincere gratitude to “Allah” for the blessing and mercy given to me during the completion of this thesis. To my parents for their support in all circumstances. I would like to express my sincere gratitude and heartfelt thanks to my supervisor Prof. Dr. Abdalla El-Habil for the continuous support of my M.Sc. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.Sc. study. My sincere thanks also goes to Prof. Dr. Mahmoud Okasha, Dr. Shady Al- Telbany, and Dr. Mo'omen El-Hanjouri, who provided me an opportunity to join their team as intern, and who gave access to the laboratory and research facilities. Without their precious support it would not be possible to conduct this research. Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Mo'omen El-Hanjouri and Dr. Raed Sallha for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives. Last but not least, I would like to thank my family, friends and those who supported me throughout my years of study. Thank you All. VI ABSTRACT This thesis, discusses the linear panel data analysis procedures which is basically models in panel data literature. It also discusses some of the related estimation methods and the so called individual specific effect . We discussed the unobservable individual effects as one of the key advantages of panel data models which lead to control for omitted variables. Linear models with constant slopes and individual intercepts (with no time effect) had particular importance in this thesis. Appropriate estimation methods for linear panel data illustrated, ordinary least squares and generalized least squares method and its technics were displayed as the adopted estimation method in this thesis. Also, this thesis explain suitable estimation for fixed effect and random effect models. Problems like endogenity and its sources, heteroskedasticity and autocorrelation had been presented. A lot of climate data had been treated with statistical analysis, especially with time series. In this thesis, we look forward to dealing climate data with panel data analysis. Global warming is our case study, we present in a simplified way the phenomenon of climate change, some related concepts. We illustrated factors believed to be the cause of climate change like carbon dioxide emissions and sun activity. We applied almost all methods that we theoretically discussed in the preceding chapters on a real dataset from thirty countries included individual temperature anomalies as dependent variable, global carbon dioxide, individual carbon dioxide, sun spot number (sun activity) and global temperature anomalies, all as dependent variables. The study concluded that the linear fixed effect model represent the best model among all other linear model and it can explain more than 66% of the variance in the independent temperature anomalies variable. Global carbon dioxide emissions is significant variable increasing effect on temperature anomalies per million metric ton. Also, the Individual carbon dioxide emission is significant variable with p- value (0.000) and decreasing effect on temperature anomalies per million metric ton. The overall constant in the model is significant p- value (0.0063) with increasing effect on temperature anomalies . The global temperature anomalies is significant variable p-value (0.000) with increasing effect . Which means, the individual temperature anomalies are effected by the overall global temperature anomalies . Sun activity variable(sun spot number) has no significant effect in the model p-value (0.9905), that means the change in its periodic activity doesn't influence the climate change phenomena.. The overall constant in the model is significant p- value (0.0063) with increasing effect on temperature anomalies . And finally, each country has its own intercept ( ̂ ), some of them have increasing effect on the temperature anomalies and the others have decreasing effect. VII ملخص ذٌالش ُزٍ اﻷطشّحح إجشاءاخ ذحل٘ل ت٘اًاخ السﻻسل الضهٌ٘ح الومطؼ٘ح الخط٘ح ّالوؼشّفح توسؤ الثٌل, ّالرٖ ُٖ ًوارج أساس٘ح فٖ أدت٘اخ ت٘اًاخ الثٌل. لذهٌا هو٘ضاخ الثٌل ّأّضحٌا ذفْلِا هماسًح هغ السﻻسل الضهٌ٘ح ّ ًوارج اﻻًحذاس الخطٖ, ّذث٘ي أى ُزٍ الوو٘ضاخ ٗرثؼِا صؼْتح فٖ الرحل٘ل ّاﻻسرخذام. ّﻷى ذحل٘ل الثٌل ؼٗرثش كأسلْب ذحل٘ل هرؼذد اﻻذجاُاخ )Multivariate analysis( ذْجة ػلٌ٘ا إٗضاح الٌوْرج الخطٖ تاسرخذام الوصفْفاخ الشٗاض٘ح ّكزلك ت٘اى الشكل الؼام لوصفْفح الرغاٗش. كوا ًالشٌا تؼض طشق الرمذٗش راخ الصلح ّالرأث٘ش الفشدٕ الوحذد. كزلك أّضحٌا أُن هو٘ضاخ الثٌل الوروثلح فٖ اكرشاف الرأث٘شاخ الفشدٗح غ٘ش الماتلح لﻻكرشاف تاػرثاسُا إحذٓ الوضاٗا الشئ٘س٘ح لٌوارج ت٘اًاخ الثٌل, ّ الرٖ ٗوكي هي خﻻلِا الرغلة ػلٔ هشكلح الورغ٘شاخ الوخف٘ح أّ الوحزّفح. ّلمذ أّلد ُزٍ اﻷطشّحح أُو٘ح خاصح للٌوارج الخط٘ح راخ الوؼالن الثاترح ّالمْاطغ الفشدٗح )تذّى ذأث٘ش صهٌٖ(. ّتوا أى طشق الرمذٗش الرمل٘ذٗح ﻻ ذجذٕ ًفؼا هغ ُزا اﻻسلْب الورطْس, ذن إٗضاح تؼض طشق الرمذٗش الوٌاسثح لث٘اًاخ الثٌل الخط٘ح , كطشٗمح ذمذٗش الوشتؼاخ الصغشٓ ّطشٗمح الوشتؼاخ الصغشٓ الوؼووح ّتؼض اﻷسال٘ة الخاصح تِا ّأسرخذاهِا كطشق هؼروذج للرمذٗش. كوا ذششح ُزٍ الشسالح ذمذٗ ًشا هٌاسثًا لٌوارج الرأث٘شاخ الثاترح ًّوارج الرأث٘شاخ الؼشْائ٘ح , ّاﻷُن ك٘ف ٗوكي الرؼاهل هغ أُن هشكلر٘ي فٖ ذحل٘ل الثٌل ُّٖ ػذم الرجاًس ت٘ي ذثاٗي اﻻخطاء الؼشْائ٘ح ّكزلك الرشاتظ الزاذٖ ت٘ي ُزٍ اﻷخطاء. أضف الٔ رلك الرشاتظ ت٘ي اﻷخطاء الؼشْائ٘ح ّالورغ٘شاخ الوسرملح ال ُو َسؤ (Endogenity) ّهصادسٍ. اﻹحرشاس الوٌاخٖ ُْ هْضْع الذساسح الرطث٘م٘ح فٖ ُزٍ اﻻطشّحح. لذهٌا تشكل هثسظ ظاُشج الرغ٘ش الوٌاخٖ ّتؼض الوفاُ٘ن الوشذثطح تِا. أّضحٌا تؼض الؼْاهل الوفرشضح كوسثثاخ للرغ٘ش الوٌاخٖ هثل اًثؼاثاخ غاص ثاًٖ أكس٘ذ الكشتْى ّالٌشاط الشوسٖ. ثن لوٌا ترطث٘ك هؼظن اﻻسال٘ة الٌظشٗح ساتمح الزكش ػلٔ هجوػْح ت٘اًاخ حم٘م٘ح ذشول ثﻻثْى دّلح ّفِ٘ا هرغ٘ش اًحشاف دسجاخ الحشاسج ػي الورْسظ كورغ٘ش ذاتغ, ّهرغ٘شاخ اًثؼاثاخ ثاًٖ أكس٘ذ الكشتْى الوحل٘ح ّاًثؼاثاذَ الؼالو٘ح ّكزلك اًحشاف دسجاخ الحشاسج الؼالو٘ح ػي الورْسظ ػّذد الثمغ الشوس٘ح )الٌشاط الشوسٖ(, جوؼِ٘ا كورغ٘شاخ هسرملح. اسرٌرجد الذساسح أى ًوْرج الرأث٘شاخ الثاترح ُْ اﻷفضل هي ت٘ي الٌوارج اﻻخشٓ, ّأى ُزا الٌوْرج ٗوكٌَ ذفس٘ش 66% هي الرثاٗي الخاص تالورغ٘ش الراتغ. كوا أى هرغ٘ش اًثؼاثاخ الكشتْى الؼالو٘ح رّ دﻻلح إحصائ٘ح ػٌذ p-value 0.05 ّلَ ذأث٘ش تالضٗادج ػلٔ اًحشاف دسجاخ الحشاسج ػي الورْسظ تومذاس لكل هلْ٘ى طي هرشٕ, كوا أى هرغ٘ش اًثؼاثاخ ثاًٖ أكس٘ذ الكشتْى الوحل٘ح رّ دﻻلح احصائ٘ح ػٌذ p-value 0.05 ّلَ ذأث٘ش تالسالة ػلٔ اًحشاف دسجاخ الحشاسج ػي الورْسظ تومذاس لكل هلْ٘ى طي هرشٕ. كوا أى همذاس الثاتد رّ دﻻلَ احصائ٘ح ػٌذ (p- value (0.05 ّلَ ذأث٘ش تالضٗادج تومذاس ,كوا أى هرغ٘ش هرْسظ اًحشاف دسجاخ الحشاسج الؼالو٘ح رّ دﻻلح احصائ٘ح ػٌذ p-value 0.05 تومذاس . أها هرغ٘ش ػذد الثمغ الشوس٘ح ّالخاص تالٌشاط الشوسٖ لن ٗكي رّ دﻻلح احصائ٘ح (p-value (0.9905 , إٔ أى الشوس ل٘س لِا دّس ٗزكش فٖ اﻻحرشاس الوٌاخٖ. كوا أى لكل دّلح همذاس ثاتد خاص تِا ̂ تؼضِا رّ ذأث٘ش تالضٗادج ّتؼضِا تالسالة. VIII TABLE OF CONTENTS ABSTRACT ................................................................................................................................ VII LIST OF TABLES ...................................................................................................................... XII LIST OF FIGURES .................................................................................................................... XIII CHAPTER ONE - 1 -INTRODUCTION ................................................................................... - 1 - 1.1 Background .................................................................................................................... - 1 - 1.2 Research Problem ............................................................................................................ - 2 - 1.3 Research Methodology ..................................................................................................... - 3 - 1.4 Research Objectives ......................................................................................................... - 3 - 1.5 Literature Review ............................................................................................................