3D Distance Fields: a Survey of Techniques and Applications
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006 581 3D Distance Fields: A Survey of Techniques and Applications Mark W. Jones, J. Andreas Bærentzen, and Milos Sramek Abstract—A distance field is a representation where, at each point within the field, we know the distance from that point to the closest point on any object within the domain. In addition to distance, other properties may be derived from the distance field, such as the direction to the surface, and when the distance field is signed, we may also determine if the point is internal or external to objects within the domain. The distance field has been found to be a useful construction within the areas of computer vision, physics, and computer graphics. This paper serves as an exposition of methods for the production of distance fields, and a review of alternative representations and applications of distance fields. In the course of this paper, we present various methods from all three of the above areas, and we answer pertinent questions such as How accurate are these methods compared to each other? How simple are they to implement?, and What is the complexity and runtime of such methods? Index Terms—Distance field, volume, voxel, fast marching method, level-set method, medial axis, cut locus, skeletonization, voxelization, volume data, visualization, distance transform. æ 1INTRODUCTION ERHAPS the earliest appearance of distance fields in the suitable antialiased representation of geometric objects for Pliterature is the 1966 image processing paper by the purposes of Volume Graphics. The term Volume Graphics Rosenfeld and Pfaltz [97], where they present the applica- was first introduced by Kaufman et al.
[Show full text]