TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells Wei Xiong,1 Nicolas Grillet,1 Heather M. Elledge,1 Thomas F.J. Wagner,1 Bo Zhao,1 Kenneth R. Johnson,2 Piotr Kazmierczak,1 and Ulrich Mu¨ller1,* 1The Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA 2The Jackson Laboratory, Bar Harbor, ME 04609, USA *Correspondence:
[email protected] http://dx.doi.org/10.1016/j.cell.2012.10.041 SUMMARY deflection of the stereociliary bundles, which directly control the activity of the mechanotransduction channels in stereocilia. Hair cells are mechanosensors for the perception of It is thought that tip links, fine extracellular filaments that connect sound, acceleration, and fluid motion. Mechano- the tips of neighboring stereocilia, transmit tension force onto transduction channels in hair cells are gated by tip the transduction channels (Gillespie and Mu¨ ller, 2009). links, which connect the stereocilia of a hair cell in In recent years, significant progress has been made in the direction of their mechanical sensitivity. The the identification of components of the mechanotransduction molecular constituents of the mechanotransduction machinery of hair cells (Figure 1A). These studies have shown that tip links are formed by CDH23 homodimers that interact channels of hair cells are not known. Here, we show with PCDH15 homodimers to form the upper and lower parts that mechanotransduction is impaired in mice lack- of tip links (Ahmed et al., 2006; Kazmierczak et al., 2007; ing the tetraspan TMHS. TMHS binds to the tip-link Siemens et al., 2004; So¨ llner et al., 2004).