Proofs That Yield Nothing but Their Validity Or All Languages in NP Have Zero-Knowledge Proof Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly. -
LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students. -
Foundations of Cryptography – a Primer Oded Goldreich
Foundations of Cryptography –APrimer Foundations of Cryptography –APrimer Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot Israel [email protected] Boston – Delft Foundations and TrendsR in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1 781 871 0245 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 A Cataloging-in-Publication record is available from the Library of Congress Printed on acid-free paper ISBN: 1-933019-02-6; ISSNs: Paper version 1551-305X; Electronic version 1551-3068 c 2005 O. Goldreich All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. now Publishers Inc. has an exclusive license to publish this mate- rial worldwide. Permission to use this content must be obtained from the copyright license holder. Please apply to now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: [email protected] Contents 1 Introduction and Preliminaries 1 1.1 Introduction 1 1.2 Preliminaries 7 IBasicTools 10 2 Computational Difficulty and One-way Functions 13 2.1 One-way functions 14 2.2 Hard-core predicates 18 3 Pseudorandomness 23 3.1 Computational indistinguishability 24 3.2 Pseudorandom generators -
A Note on Perfect Correctness by Derandomization⋆
A Note on Perfect Correctness by Derandomization? Nir Bitansky and Vinod Vaikuntanathan MIT Abstract. We show a general compiler that transforms a large class of erroneous cryptographic schemes (such as public-key encryption, indis- tinguishability obfuscation, and secure multiparty computation schemes) into perfectly correct ones. The transformation works for schemes that are correct on all inputs with probability noticeably larger than half, and are secure under parallel repetition. We assume the existence of one-way functions and of functions with deterministic (uniform) time complexity 2O(n) and non-deterministic circuit complexity 2Ω(n). Our transformation complements previous results that showed how public- key encryption and indistinguishability obfuscation that err on a notice- able fraction of inputs can be turned into ones that for all inputs are often correct. The technique relies on the idea of \reverse randomization" [Naor, Crypto 1989] and on Nisan-Wigderson style derandomization, previously used in cryptography to remove interaction from witness-indistinguishable proofs and commitment schemes [Barak, Ong and Vadhan, Crypto 2003]. 1 Introduction Randomized algorithms are often faster and simpler than their state-of-the-art deterministic counterparts, yet, by their very nature, they are error-prone. This gap has motivated a rich study of derandomization, where a central avenue has been the design of pseudo-random generators [BM84, Yao82a, NW94] that could offer one universal solution for the problem. This has led to surprising results, intertwining cryptography and complexity theory, and culminating in a deran- domization of BPP under worst-case complexity assumptions, namely, the ex- istence of functions in E = Dtime(2O(n)) with worst-case circuit complexity 2Ω(n) [NW94, IW97]. -
A Decade of Lattice Cryptography
Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged. -
The Best Nurturers in Computer Science Research
The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities. -
Counting T-Cliques: Worst-Case to Average-Case Reductions and Direct Interactive Proof Systems
2018 IEEE 59th Annual Symposium on Foundations of Computer Science Counting t-Cliques: Worst-Case to Average-Case Reductions and Direct Interactive Proof Systems Oded Goldreich Guy N. Rothblum Department of Computer Science Department of Computer Science Weizmann Institute of Science Weizmann Institute of Science Rehovot, Israel Rehovot, Israel [email protected] [email protected] Abstract—We study two aspects of the complexity of counting 3) Counting t-cliques has an appealing combinatorial the number of t-cliques in a graph: structure (which is indeed capitalized upon in our 1) Worst-case to average-case reductions: Our main result work). reduces counting t-cliques in any n-vertex graph to counting t-cliques in typical n-vertex graphs that are In Sections I-A and I-B we discuss each study seperately, 2 drawn from a simple distribution of min-entropy Ω(n ). whereas Section I-C reveals the common themes that lead 2 For any constant t, the reduction runs in O(n )-time, us to present these two studies in one paper. We direct the and yields a correct answer (w.h.p.) even when the reader to the full version of this work [18] for full details. “average-case solver” only succeeds with probability / n 1 poly(log ). A. Worst-case to average-case reductions 2) Direct interactive proof systems: We present a direct and simple interactive proof system for counting t-cliques in 1) Background: While most research in the theory of n-vertex graphs. The proof system uses t − 2 rounds, 2 2 computation refers to worst-case complexity, the impor- the verifier runs in O(t n )-time, and the prover can O(1) 2 tance of average-case complexity is widely recognized (cf., be implemented in O(t · n )-time when given oracle O(1) e.g., [13, Chap. -
Constraint Based Dimension Correlation and Distance
Preface The papers in this volume were presented at the Fourteenth Annual IEEE Conference on Computational Complexity held from May 4-6, 1999 in Atlanta, Georgia, in conjunction with the Federated Computing Research Conference. This conference was sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing, in cooperation with the ACM SIGACT (The special interest group on Algorithms and Complexity Theory) and EATCS (The European Association for Theoretical Computer Science). The call for papers sought original research papers in all areas of computational complexity. A total of 70 papers were submitted for consideration of which 28 papers were accepted for the conference and for inclusion in these proceedings. Six of these papers were accepted to a joint STOC/Complexity session. For these papers the full conference paper appears in the STOC proceedings and a one-page summary appears in these proceedings. The program committee invited two distinguished researchers in computational complexity - Avi Wigderson and Jin-Yi Cai - to present invited talks. These proceedings contain survey articles based on their talks. The program committee thanks Pradyut Shah and Marcus Schaefer for their organizational and computer help, Steve Tate and the SIGACT Electronic Publishing Board for the use and help of the electronic submissions server, Peter Shor and Mike Saks for the electronic conference meeting software and Danielle Martin of the IEEE for editing this volume. The committee would also like to thank the following people for their help in reviewing the papers: E. Allender, V. Arvind, M. Ajtai, A. Ambainis, G. Barequet, S. Baumer, A. Berthiaume, S. -
Interactions of Computational Complexity Theory and Mathematics
Interactions of Computational Complexity Theory and Mathematics Avi Wigderson October 22, 2017 Abstract [This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, whose draft is available at https://www.math.ias.edu/avi/book]. We survey some concrete interaction areas between computational complexity theory and different fields of mathematics. We hope to demonstrate here that hardly any area of modern mathematics is untouched by the computational connection (which in some cases is completely natural and in others may seem quite surprising). In my view, the breadth, depth, beauty and novelty of these connections is inspiring, and speaks to a great potential of future interactions (which indeed, are quickly expanding). We aim for variety. We give short, simple descriptions (without proofs or much technical detail) of ideas, motivations, results and connections; this will hopefully entice the reader to dig deeper. Each vignette focuses only on a single topic within a large mathematical filed. We cover the following: • Number Theory: Primality testing • Combinatorial Geometry: Point-line incidences • Operator Theory: The Kadison-Singer problem • Metric Geometry: Distortion of embeddings • Group Theory: Generation and random generation • Statistical Physics: Monte-Carlo Markov chains • Analysis and Probability: Noise stability • Lattice Theory: Short vectors • Invariant Theory: Actions on matrix tuples 1 1 introduction The Theory of Computation (ToC) lays out the mathematical foundations of computer science. I am often asked if ToC is a branch of Mathematics, or of Computer Science. The answer is easy: it is clearly both (and in fact, much more). Ever since Turing's 1936 definition of the Turing machine, we have had a formal mathematical model of computation that enables the rigorous mathematical study of computational tasks, algorithms to solve them, and the resources these require. -
Optimal Hitting Sets for Combinatorial Shapes
Optimal Hitting Sets for Combinatorial Shapes Aditya Bhaskara∗ Devendra Desai† Srikanth Srinivasan‡ November 5, 2018 Abstract We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combi- natorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) and Rabani and Shpilka (SICOMP 2010), we construct hitting sets for Combinatorial Shapes of size polynomial in the alphabet, dimension, and the inverse of the error parame- ter. This is optimal up to polynomial factors. The best previous hitting sets came from the Pseudorandom Generator construction of Gopalan et al., and in particular had size that was quasipolynomial in the inverse of the error parameter. Our construction builds on natural variants of the constructions of Linial et al. and Rabani and Shpilka. In the process, we construct fractional perfect hash families and hitting sets for combinatorial rectangles with stronger guarantees. These might be of independent interest. 1 Introduction Randomness is a tool of great importance in Computer Science and combinatorics. The probabilistic method is highly effective both in the design of simple and efficient algorithms and in demonstrating the existence of combinatorial objects with interesting properties. But the use of randomness also comes with some disadvantages. In the setting of algorithms, introducing randomness adds to the number of resource requirements of the algorithm, since truly random bits are hard to come by. For combinatorial constructions, ‘explicit’ versions of these objects often turn out to have more structure, which yields advantages beyond the mere fact of their existence (e.g., we know of explicit arXiv:1211.3439v1 [cs.CC] 14 Nov 2012 error-correcting codes that can be efficiently encoded and decoded, but we don’t know if random codes can [5]). -
Computational Complexity
Computational Complexity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Vadhan, Salil P. 2011. Computational complexity. In Encyclopedia of Cryptography and Security, second edition, ed. Henk C.A. van Tilborg and Sushil Jajodia. New York: Springer. Published Version http://refworks.springer.com/mrw/index.php?id=2703 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Computational Complexity Salil Vadhan School of Engineering & Applied Sciences Harvard University Synonyms Complexity theory Related concepts and keywords Exponential time; O-notation; One-way function; Polynomial time; Security (Computational, Unconditional); Sub-exponential time; Definition Computational complexity theory is the study of the minimal resources needed to solve computational problems. In particular, it aims to distinguish be- tween those problems that possess efficient algorithms (the \easy" problems) and those that are inherently intractable (the \hard" problems). Thus com- putational complexity provides a foundation for most of modern cryptogra- phy, where the aim is to design cryptosystems that are \easy to use" but \hard to break". (See security (computational, unconditional).) Theory Running Time. The most basic resource studied in computational com- plexity is running time | the number of basic \steps" taken by an algorithm. (Other resources, such as space (i.e., memory usage), are also studied, but they will not be discussed them here.) To make this precise, one needs to fix a model of computation (such as the Turing machine), but here it suffices to informally think of it as the number of \bit operations" when the input is given as a string of 0's and 1's. -
Complexity Theory and Cryptography Understanding the Foundations of Cryptography Is Understanding the Foundations of Hardness
Manuel Sabin Research Statement Page 1 / 4 I view research as a social endeavor. This takes two forms: 1) Research is a fun social activity. 2) Research is done within a larger sociotechnical environment and should be for society's betterment. While I try to fit all of my research into both of these categories, I have also taken two major research directions to fulfill each intention. 1) Complexity Theory asks profound philosophical questions and has compelling narratives about the nature of computation and about which problems' solutions may be provably beyond our reach during our planet's lifetime. Researching, teaching, and mentoring on this field’s stories is one my favorite social activities. 2) Algorithmic Fairness' questioning of how algorithms further cement and codify systems of oppression in the world has impacts that are enormously far-reaching both in current global problems and in the nature of future ones. This field is in its infancy and deciding its future and impact with intention is simultaneously exciting and frightening but, above all, of absolute necessity. Complexity Theory and Cryptography Understanding the foundations of Cryptography is understanding the foundations of Hardness. Complexity Theory studies the nature of computational hardness { i.e. lower bounds on the time required in solving computational problems { not only to understand what is difficult, but to understand the utility hardness offers. By hiding secrets within `structured hardness,' Complexity Theory, only as recently as the 1970s, transformed the ancient ad-hoc field of Cryptography into a science with rigorous theoretical foundations. But which computational hardness can we feel comfortable basing Cryptography on? My research studies a question foundational to Complexity Theory and Cryptography: Does Cryptography's existence follow from P 6= NP? P is the class of problems computable in polynomial time and is qualitatively considered the set of `easy' problems, while NP is the class of problems whose solutions, when obtained, can be checked as correct in polynomial time.