Bacteriocin from Purple Nonsulfur Phototrophic Bacteria, Rhodobacter Capsulatus

Total Page:16

File Type:pdf, Size:1020Kb

Bacteriocin from Purple Nonsulfur Phototrophic Bacteria, Rhodobacter Capsulatus Journal of Bacteriology and Virology 2009. Vol. 39, No. 4 p.269 – 276 DOI 10.4167/jbv.2009.39.4.269 Original Article Bacteriocin from Purple Nonsulfur Phototrophic Bacteria, Rhodobacter capsulatus * * Sang-Seob Lee1, Tae Jung Oh2, Jaisoo Kim1 , Jong-Bae Kim3 and Hyun-Soon Lee4 1Department of Life Science, Kyonggi University, Suwon, Korea 2Genomictree, Inc., Daejon, Korea 3School of Life & Food Sciences, Handong Global University, Pohang, Korea 4Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea To find whether productivity of bacteriocin is controlled between different species under unusual cultural conditions, we used Rhodobacter capsulatus ATCC 17016 as a producer and Rhodopseudomonas palustris ATCC 17003 as an indicator. Rhodobacter capsulatus was cultured under aerobic conditions in the dark in Lascelles medium containing 0.3% Triton X-100. As a result, bacteriocin productivity increased enormously. The optimal pH range of bacteriocin production was 6~7.8. Through partial purification of bacteriocin, the molecular weight was roughly estimated at 14 kDa. Plasmid had no influence on bacteriocin production by Rhodobacter capsulatus. Our findings indicate that culture conditions affect bacteriocin productivity between more distantly related species, and bacteriocin of Rhodobacter capsulatus is not encoded by a plasmid. Key Words: Bacteriocin, Rhodobacter capsulatus, Lascelles medium by lactic acid bacteria kill some pathogenic bacteria (e.g., INTRODUCTION Listeria) with high efficiency (2). Most research has been dedicated to lactic acid bacteria Many gram-positive bacteria and some gram-negative for combination of bacteriocin with antimicrobial agents, bacteria produce ribosomally-synthesized antimicrobial membrane permeability and LPS affinity (2, 10, 11). peptides or proteins, often termed bacteriocins (1~5). The However, bactericidal peptides are produced by several other important role of bacteriocins is to inhibit or kill bacteria classes of bacteria, such as strict and facultative anaerobes. that are usually closely related to the producer strain (6~8). Some facultative anaerobic purple nonsulfur bacteria such Bactericidal effects of bacteriocins have been recognized as as Rhodobacter capsulatus, Rhodobacter sphaeroides and an important subject in food fermentation and preservation. Rhodopseudomonas palustris have been found to produce Those produced by lactic acid bacteria have been largely bacteriocins (12~14). In this work, we isolated bacteriocin studied as potentially safe food-grade preservatives of from Rhodobacter capsulatus ATCC 17016 cultured in biological origin (9). The class IIa bacteriocins produced Lascelles medium to study bacteriocin production from purple nonsulfur phototrophic bacteria, because Lascelles Received: August 19, 2009/ Revised: September 22, 2009 Accepted: October 16, 2009 medium has long been recognized for bacteriocin production * Corresponding author: Jaisoo Kim. Department of Life Science, by purple nonsulfur phototrophic bacteria (12). But this Kyonggi University, Suwon 443-760, Korea. Phone: +82-31-249-9648, Fax: +82-31-249-9139 species didn't produce enough bacteriocin. Once Triton e-mail: [email protected] X-100 was added to Lascelles medium, much more **This work was in part supported by a grant from the Korea Research Foundation. bacteriocin was produced than that in Lascelles medium 269 270 S-S Lee, et al. alone. Under diversified nutrient conditions, the bacteriocin B. Braun, Allentown, PA, USA) and centrifuged (15,000 of Rhodobacter capsulatus ATCC 17016 was studied and its rpm) for 15 min at 4℃. The supernatant was separated into molecular weight was roughly estimated. Lantibacteriocins three fractions of molecular weight <103, 103~104, >104 (4, 15) and circular bacteriocins (16, 17) were encoded by Dalton using ultrafiltration membranes (Amicon TC-10, the responsive plasmids. However, Rhodobacter capsulatus Millipore, Billerica, MA, USA). Then they were lyophilized didn't show plasmid dependence. and tested for bacteriocin activity, for purification on FPLC system. MATERIALS AND METHODS Activity was determined according to Brock et al. (19) and Guest (12). Briefly, 4 wells were made in agar plates Strains and cultures (1.5%) and filled with mixtures of equal amount of 3% Bacterial strains used in this study were Rhodobacter agar media and bacteriocin samples dissolved in sterilized capsulatus ATCC 17016 as a producer strain and DW. After solidifying, the bacteriocin-seeded plates were Rhodopseudomonas palustris ATCC 17003 as an indicator overlaid with soft agar (0.5%) medium containing 2 ml of strain. Precultures were grown on a medium 27 (DSM, indicator strain (ca. 4.8 × 108 cells/ml). The overlaid plates Braunschweig, Germany) supplemented with trace element were incubated in anaerobic jars (CO2 + H2 gas pack, BBL, SL-6 under anaerobic photosynthetic conditions illuminated Becton Dickinson, Cockeysville, MD, USA) under light at with incandescent lamp (ca. 3000 Lux) at 28℃. Cells were 28 ± 2℃ for 5 days. If the bacteriocin activity were routinely prepared in 10 ml screw cap tubes completely present, growth inhibition zones could be observed around filled with media at these conditions and used as a standard the wells containing the indicator strains. Activity units per strain. milliliter were defined according to the method of Jorger Strains of producer and indicator were cultivated in the and Klaehammer (20). medium described by Lascelles (18) according to procedures pH and absorbance estimation by Guest (12) instead of medium 27 (DSM). Lascelles medium was supplemented with Triton X-100 (0.3%) for Studies on the effects of growth medium pH on the producer, Rhodobacter capsulatus ATCC 17016. The bacteriocin productivity were followed by the method of pH of all media was adjusted to pH 6.8. Jorger and Klenhammer (20). Producer strain Rhodobacter Aerobic cultures in the dark were carried out with 5,000 capsulatus, with initial culture medium pH adjusted to 5.0, ml bottles filled with 300 ml Lascelles medium supple- 6.0, 6.8 and 8.0 with 5 N NaOH was cultured aerobically mented with Triton X-100 (0.3%). These were inoculated by shaking (50 rpm) in the liquid in the dark. Every 24 hrs, with 5 ml of the standard strain (OD600 1.5) and shaken at cultures of Rhodobacter capsulatus were measured for pH 50 rpm and 28 ± 2℃ for 4 days. (Fisher 230A, Fisher Scientific, Pittsburgh, PA, USA) and absorbance at 660 nm using spectrophotometer (spectronic Bacteriocin detection and activity assay 20, Bausch & Lomb, Inc., Rochester, NY, USA). To produce the bacteriocin, the producer strains were After inoculation, Rhodobacter capsulatus was aerobically aerobically cultured in the dark conditions described as cultured in the dark for 4 days. Two grams of cell mass above. Cells were collected by centrifugation for 10 min at were dissolved in 2 ml DW, disrupted with ultrasonic 4℃ (8,000 rpm, Sorvall Gs-3 rotor, RC-5B, DuPont, St. system (3 mm probe, 80 Hz for 1 min, 3 times), and mixed Louis, MI, USA). Cell pellets were washed twice with DW equally with 3% agar medium. Then bacteriocin activity was and finally re-suspended in DW (1 g/ml, wet weight). Cells determined as mentioned above according to the method of were disrupted by ultrasonic system under ice base for 21 Brock et al. (19) and Guest (12). min (Ultrasonic 19 mm probe, 230 Hz, 3 min × 7 times, Bacteriocin from Purple Nonsulfur Phototrophic Bacteria 271 The materials for estimation of molecular weight of Bacteriocin productivity under chloramphenicol bacteriocin under SDS-PAGE and silver staining were tris treatment (BRL, Grand Island, NY, USA), acrylamide (BRL), bis- It was reported that bacteriocin production was coded by acrylamide (BRL), SDS (Sigma, ST. Louis, MO, USA), plasmid DNA (21~25). In order to increase bacteriocin β-mercaptoethanol (LKB, Bromma, Sweden), bromophenol production, plasmid DNA was amplified with the method blue (Sigma), TEMED (Sigma), glycin (Sigma), silver of Yasuyoshi et al. (24). After shaking aerobically in the nitrate (Sigma), nitrocellulose filter (Hoefer, San Fransisco, dark, it was cultured for 48 hrs in a chloramphenicol- CA, USA), and an electrophoresis unit & transfer unit containing medium (concentration of 50 μg/ml) and the (Hoefer). Molecular weight of bacteriocin was estimated activity was tested. by western blotting and silver staining. Plasmid isolation Immunization and confirmation test of antibody generation Plasmid DNA was isolated from nonsulfur phototrophic bacteria by alkaline lysis (26). For the generation of rabbit polyclonal antibody to bacteriocin, the following reagents were required: Freund's Electrophoresis adjuvant (complete & incomplete: Gibco BRL, Grand Island, Plasmid separation was conducted using 0.9% agarose NY, USA), maxi mix (Thermolyne Co., Dubuque, IA, USA). gel electrophoresis, which was modified from the methods The equipments for identification of bacteriocin antigen by of Maniatis et al. (26), Bearden (27) and Kado and Liu (28). an ELISA were bovine serum albumin (Sigma), plate λDNA was cut with Hind lll for measuring plasmid DNA shaker (Dynatech Laboratories, Inc., Chantilly, VA, USA), size, development was conducted under 60 V for 4.5 hrs, goat-anti-rabbit-IgG-HRP (Molecular Probes, Eugene, OR, and the gel was photographed by konix pan Tri-x film on USA), OPD (Sigma), and ELISA autoreader (Pharmacia, UV-transilluminator (245 nm). Uppsala, Sweden). Bacteriocin (100 μg) dissolved in PBS (phosphate- Plasmid curing test buffered saline)
Recommended publications
  • Rhodobacter Veldkampii, a New Species of Phototrophic Purple Nonsulfur Bacteria
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OceanRep INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1985, p. 115-116 Vol. 35, No. 1 0020-7713/85/010115-02$02.OO/O Copyright 0 1985, International Union of Microbiological Societies Rhodobacter veldkampii, a New Species of Phototrophic Purple Nonsulfur Bacteria T. A. HANSEN’ AND J. F. IMHOFF2* Laboratory of Microbiology, University of Groningen, Haren, The Netherlands, and Institut fur Mikrobiologie, Rheinische Friedrich- Wilhelms- Universitat, 0-5300 Bonn, Federal Republic of Germany’ We describe a new species of purple nonsulfur bacteria, which has the ability to grow under photoauto- trophic growth conditions with sulfide as an electron donor and shows the characteristic properties of Rhodobacter species (i.e., ovoid to rod-shaped cells, vesicular internal photosynthetic membranes, bacterio- chlorophyll a and carotenoids of the spheroidene series as photosynthetic pigments). In its physiological properties this new species is particularly similar to the recently described species Rhodobacter adriaticus, but it shows enough differences compared with R. adriaticus and the other Rhodobacter species to be recognized as a separate species. In honor of Hans Veldkamp, a Dutch microbiologist, the name Rhodobacter veldkampii sp. nov. is proposed. During attempts to isolate freshwater strains of the pho- nonsulfur bacterium was isolated, which oxidized sulfide totrophic purple nonsulfur bacterium Rhodobacter suljidoph- during photoautotrophic growth to sulfate by using it as an ilus, Hansen (Ph.D. thesis, University of Groningen, Haren, electron donor for photosynthesis (3). The following descrip- The Netherlands, 1974) obtained two strains (strains 51T [T tion is based entirely on previously published data (1, 2, 6; = type strain] and 55) of a bacterium which tolerated rather Hansen, Ph.D.
    [Show full text]
  • Section 4. Guidance Document on Horizontal Gene Transfer Between Bacteria
    306 - PART 2. DOCUMENTS ON MICRO-ORGANISMS Section 4. Guidance document on horizontal gene transfer between bacteria 1. Introduction Horizontal gene transfer (HGT) 1 refers to the stable transfer of genetic material from one organism to another without reproduction. The significance of horizontal gene transfer was first recognised when evidence was found for ‘infectious heredity’ of multiple antibiotic resistance to pathogens (Watanabe, 1963). The assumed importance of HGT has changed several times (Doolittle et al., 2003) but there is general agreement now that HGT is a major, if not the dominant, force in bacterial evolution. Massive gene exchanges in completely sequenced genomes were discovered by deviant composition, anomalous phylogenetic distribution, great similarity of genes from distantly related species, and incongruent phylogenetic trees (Ochman et al., 2000; Koonin et al., 2001; Jain et al., 2002; Doolittle et al., 2003; Kurland et al., 2003; Philippe and Douady, 2003). There is also much evidence now for HGT by mobile genetic elements (MGEs) being an ongoing process that plays a primary role in the ecological adaptation of prokaryotes. Well documented is the example of the dissemination of antibiotic resistance genes by HGT that allowed bacterial populations to rapidly adapt to a strong selective pressure by agronomically and medically used antibiotics (Tschäpe, 1994; Witte, 1998; Mazel and Davies, 1999). MGEs shape bacterial genomes, promote intra-species variability and distribute genes between distantly related bacterial genera. Horizontal gene transfer (HGT) between bacteria is driven by three major processes: transformation (the uptake of free DNA), transduction (gene transfer mediated by bacteriophages) and conjugation (gene transfer by means of plasmids or conjugative and integrated elements).
    [Show full text]
  • Regulation of Bacterial Photosynthesis Genes by the Small Noncoding RNA Pcrz
    Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ Nils N. Mank, Bork A. Berghoff, Yannick N. Hermanns, and Gabriele Klug1 Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, D-35392 Giessen, Germany Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved August 10, 2012 (received for review April 27, 2012) The small RNA PcrZ (photosynthesis control RNA Z) of the faculta- and induces transcription of photosynthesis genes at very low tive phototrophic bacterium Rhodobacter sphaeroides is induced oxygen tension or in the absence of oxygen (5, 10–13). Further- upon a drop of oxygen tension with similar kinetics to those of more, the FnrL protein activates some photosynthesis genes at genes for components of photosynthetic complexes. High expres- low oxygen tension (13) and the PpaA regulator activates some sion of PcrZ depends on PrrA, the response regulator of the PrrB/ photosynthesis genes under aerobic conditions (14). More re- cently CryB, a member of a newly described cryptochrome family PrrA two-component system with a central role in redox regula- R. sphaeroides (15), was shown to affect expression of photosynthesis genes in tion in . In addition the FnrL protein, an activator of R. sphaeroides and to interact with AppA (16, 17). Remarkably, some photosynthesis genes at low oxygen tension, is involved in the different signaling pathways for control of photosynthesis redox-dependent expression of this small (s)RNA. Overexpression genes are also interconnected, e.g., the appA gene is controlled of full-length PcrZ in R. sphaeroides affects expression of a small by PrrA (18, 19) and a PpsR binding site is located in the ppaA subset of genes, most of them with a function in photosynthesis.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Potential of Rhodobacter Capsulatus Grown in Anaerobic-Light Or Aerobic-Dark Conditions As Bioremediation Agent for Biological Wastewater Treatments
    water Article Potential of Rhodobacter capsulatus Grown in Anaerobic-Light or Aerobic-Dark Conditions as Bioremediation Agent for Biological Wastewater Treatments Stefania Costa 1, Saverio Ganzerli 2, Irene Rugiero 1, Simone Pellizzari 2, Paola Pedrini 1 and Elena Tamburini 1,* 1 Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari, 46 | 44121 Ferrara, Italy; [email protected] (S.C.); [email protected] (I.R.); [email protected] (P.P.) 2 NCR-Biochemical SpA, Via dei Carpentieri, 8 | 40050 Castello d’Argile (BO), Italy; [email protected] (S.G.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +39-053-245-5329 Academic Editors: Wayne O’Connor and Andreas N. Angelakis Received: 4 October 2016; Accepted: 2 February 2017; Published: 10 February 2017 Abstract: The use of microorganisms to clean up wastewater provides a cheaper alternative to the conventional treatment plant. The efficiency of this method can be improved by the choice of microorganism with the potential of removing contaminants. One such group is photosynthetic bacteria. Rhodobacter capsulatus is a purple non-sulfur bacterium (PNSB) found to be capable of different metabolic activities depending on the environmental conditions. Cell growth in different media and conditions was tested, obtaining a concentration of about 108 CFU/mL under aerobic-dark and 109 CFU/mL under anaerobic-light conditions. The biomass was then used as a bioremediation agent for denitrification and nitrification of municipal wastewater to evaluate the potential to be employed as an additive in biological wastewater treatment. Inoculating a sample of mixed liquor withdrawn from the municipal wastewater treatment plant with R.
    [Show full text]
  • Gene Transfer Agents in Plant Pathogenic Bacteria: Comparative Mobilomics, Genomic Survey and Recombinogenic Impacts
    Gene Transfer Agents in Plant Pathogenic Bacteria: Comparative Mobilomics, Genomic Survey and Recombinogenic Impacts Mustafa O Jibrin University of Florida Gerald V. Minsavage University of Florida Erica M. Goss University of Florida Pamela D. Roberts University of Florida Jeffrey B Jones ( [email protected] ) University of Florida https://orcid.org/0000-0003-0061-470X Research article Keywords: Prokaryotic mobile genetic elements Posted Date: August 29th, 2019 DOI: https://doi.org/10.21203/rs.2.10679/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background Gene transfer agents (GTAs) are phage-like mediators of gene transfer in bacterial species. Typically, strains of a bacteria species which have GTA shows more recombination than strains without GTAs. GTA-mediated gene transfer activity has been shown for few bacteria, with Rhodobacter capsulatus being the prototypical GTA. GTA have not been previously studied in plant pathogenic bacteria. A recent study inferring recombination in strains of the bacterial spot xanthomonads identied a Nigerian lineage which showed unusual recombination background. We initially set out to understand genomic drivers of recombination in this genome by focusing on mobile genetic elements. Results We identied a unique cluster which was present in the Nigerian strain but absent in other sequenced strains of bacterial spot xanthomonads. The protein sequence of a gene within this cluster contained the GTA_TIM domain that is present in bacteria with GTA. We identied GTA clusters in other Xanthomonas species as well as species of Agrobacterium and Pantoea. Recombination analyses showed that generally, strains of Xanthomonas with GTA have more inferred recombination events than strains without GTA, which could lead to genome divergence.
    [Show full text]
  • Genomic, Proteomic and Bioinformatic Analysis of Two Temperate Phages in Roseobacter Clade Bacteria Isolated from the Deep-Sea W
    Tang et al. BMC Genomics (2017) 18:485 DOI 10.1186/s12864-017-3886-0 RESEARCHARTICLE Open Access Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water Kai Tang* , Dan Lin, Qiang Zheng, Keshao Liu, Yujie Yang, Yu Han and Nianzhi Jiao* Abstract Background: Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Results: Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics.
    [Show full text]
  • Purification and Characterization of Rhodobacter Sphaeroides Polyhistidine-Tagged Hema and Comparison with Purified Polyhistidine- Tagged Hemt
    PURIFICATION AND CHARACTERIZATION OF RHODOBACTER SPHAEROIDES POLYHISTIDINE-TAGGED HEMA AND COMPARISON WITH PURIFIED POLYHISTIDINE- TAGGED HEMT Xiao Xiao A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2013 Committee: Dr. Jill Zeilstra-Ryalls, Ph.D., Advisor Dr. Rogers O. Scott Dr. Zhaohui Xu ii © 2013 Xiao Xiao All Rights Reserved iii ABSTRACT Jill Zeilstra-Ryalls, Ph.D, Advisor All tetrapyrrole, molecules that include heme, bacteriochlorophyll, and vitamin B12, are derived from 5-aminolevulinic acid (ALA). In the purple non-sulfur alphaproteobacteria Rhodobacter sphaeroides ALA is formed by the condensation of glycine and succinyl-CoA, catalyzed by the pyridoxal-phosphate dependent enzyme ALA synthase. Two ALA synthase genes, hemA and hemT are present in R. sphaeroides wild type strain 2.4.1. When expressed, either one of the gene products can satisfy the ALA requirement of the cell. Towards understanding the presence of two ALA synthases in one organism, each enzyme should be characterized individually in order to define what is similar and different about the enzymes. Using this information, one may be able to infer how the activities of the two ALA synthases are coordinate in R. sphaeroides. In this study, R. sphaeroides 2.4.1 recombinant polyhistidine- tagged HemA (rHemA) was affinity purified and its optimum temperature and pH, specific activity, and kinetic properties were determined. The effect of added hemin on its activity was also evaluated, as was its secondary structure composition using circular dichroism. These characteristics were then compared to those of recombinant polyhistidine-tagged HemT (rHemT).
    [Show full text]
  • Photomixotrophic Growth of Rhodobacter Capsulatus SB1003 on Ferrous Iron
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Published as: Geobiology. 2012 May ; 10(3): 216–222. HHMI Author Manuscript HHMI Author Manuscript HHMI Author Manuscript Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron Sebastian H. Kopf1 and Dianne K. Newman1,2,3 Dianne K. Newman: [email protected] 1Division of Geological and Planetary Sciences, Pasadena, CA 91125 2Division of Biological Sciences, California Institute of Technology, Pasadena, CA 91125 3Howard Hughes Medical Institute, Pasadena, CA 91125 Abstract This study investigates the role iron oxidation plays in the purple nonsulfur bacterium Rhodobacter capsulatus SB1003. This organism is unable to grow photoautotrophically on unchelated ferrous iron [Fe(II)] despite its ability to oxidize chelated Fe(II). This apparent paradox was partly resolved by the discovery that SB1003 can grow photoheterotrophical-ly on the photochemical breakdown products of certain ferric iron - ligand complexes, yet whether it could concomitantly benefit from the oxidation of Fe(II) to fix CO2 was unknown. Here, we examine carbon fixation by stable isotope labeling of the inorganic carbon pool in cultures growing phototrophically on acetate with and without Fe(II). We show that R. capsulatus SB1003, an organism formally thought incapable of phototrophic growth on Fe(II), can actually harness the reducing power of this substrate and grow photomixtotrophically, deriving carbon both from organic sources and fixation of inorganic carbon. This suggests the possibility of a wider occurrence of photoferrotrophy than previously assumed. 1. Introduction Microbial processes throughout Earth's history have had a profound impact on the biogeochemical cycling of iron (Kappler and Straub, 2005; Ehrlich and Newman, 2008).
    [Show full text]
  • A059p283.Pdf
    Vol. 59: 283–293, 2010 AQUATIC MICROBIAL ECOLOGY Published online April 21 doi: 10.3354/ame01398 Aquat Microb Ecol High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains Yunyun Fu1,*, Dawne M. MacLeod1,*, Richard B. Rivkin2, Feng Chen3, Alison Buchan4, Andrew S. Lang1,** 1Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland A1B 3X9, Canada 2Ocean Sciences Centre, Memorial University of Newfoundland, Marine Lab Road, St. John’s, Newfoundland A1C 5S7, Canada 3Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 236-701 East Pratt St., Baltimore, Maryland 21202, USA 4Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, Tennessee 37914, USA ABSTRACT: Genes encoding gene transfer agent (GTA) particles are well conserved in bacteria of the order Rhodobacterales. Members of this order are abundant in diverse marine environments, fre- quently accounting for as much as 25% of the total bacterial community. Conservation of the genes encoding GTAs allows their use as diagnostic markers of Rhodobacterales in biogeographical stud- ies. The first survey of the diversity of Rhodobacterales based on the GTA major capsid gene was con- ducted in a warm temperate estuarine ecosystem, the Chesapeake Bay, but the biogeography of Rhodobacterales has not been explored extensively. This study investigates Rhodobacterales diver- sity in the cold subarctic water near Newfoundland, Canada. Our results suggest that the subarctic region of the North Atlantic contains diverse Rhodobacterales communities in both winter and sum- mer, and that the diversity of the Rhodobacterales community in the summer Newfoundland coastal water is higher than that found in the Chesapeake Bay, in either the summer or winter.
    [Show full text]
  • Phylogeny and Polyphasic Taxonomy of Caulobacter Species. Proposal of Maricaulis Gen
    International Journal of Systematic Bacteriology (1 999), 49, 1053-1 073 Printed in Great Britain Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundirnonas and Caulobacter Wolf-Rainer Abraham,' Carsten StrOmpl,l Holger Meyer, Sabine Lindholst,l Edward R. B. Moore,' Ruprecht Christ,' Marc Vancanneyt,' B. J. Tindali,3 Antonio Bennasar,' John Smit4 and Michael Tesar' Author for correspondence: Wolf-Rainer Abraham. Tel: +49 531 6181 419. Fax: +49 531 6181 41 1. e-mail : [email protected] Gesellschaft fur The genus Caulobacter is composed of prosthecate bacteria often specialized Biotechnologische for oligotrophic environments. The taxonomy of Caulobacter has relied Forschung mbH, primarily upon morphological criteria: a strain that visually appeared to be a Mascheroder Weg 1, D- 38124 Braunschweig, member of the Caulobacter has generally been called one without Germany challenge. A polyphasic approach, comprising 165 rDNA sequencing, profiling Laboratorium voor restriction fragments of 165-235 rDNA interspacer regions, lipid analysis, Microbiologie, Universiteit immunological profiling and salt tolerance characterizations, was used Gent, Gent, Belgium to clarify the taxonomy of 76 strains of the genera Caulobacter, Deutsche Sammlung von Brevundimonas, Hyphomonas and Mycoplana. The described species of the Mikroorganismen und genus Caulobacter formed a paraphyletic group with Caulobacter henricii, Zellkulturen, Caulobacter fusiformis, Caulobacter vibrioides and Mycoplana segnis Braunschweig, Germany (Caulobacter segnis comb. nov.) belonging to Caulobacter sensu stricto. Dept of Microbiology and Caulobacter bacteroides (Brevundimonas bacteroides comb. nov.), C. henricii Immunology, University of subsp. aurantiacus (Brevundimonas aurantiaca comb. nov.), Caulobacter British Columbia, intermedius (Brevundimonas intermedia comb.
    [Show full text]
  • A Majority of Rhodobacter Sphaeroides Promoters Lack a Crucial RNA Polymerase Recognition Feature, Enabling Coordinated Transcription Activation
    A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation Kemardo K. Henrya, Wilma Rossa,1, Kevin S. Myersb, Kimberly C. Lemmerb, Jessica M. Verab, Robert Landicka,b,c, Timothy J. Donohuea,b, and Richard L. Goursea,1 aDepartment of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706; bGreat Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726; and cDepartment of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706 Edited by Lucia B. Rothman-Denes, The University of Chicago, Chicago, IL, and approved September 25, 2020 (received for review May 19, 2020) Using an in vitro transcription system with purified RNA polymer- ensure a sufficient number of ribosomes to support the cellular ase (RNAP) to investigate rRNA synthesis in the photoheterotro- growth rate. Study of rRNA transcription from the promoters for phic α-proteobacterium Rhodobacter sphaeroides, we identified a the seven E. coli rRNA operons has led to many general insights surprising feature of promoters recognized by the major holoen- about transcription and its regulation, including the discovery zyme. Transcription from R. sphaeroides rRNA promoters was un- that the nucleoid protein Fis is an important transcription factor expectedly weak, correlating with absence of −7T, the very highly (6), that the α-subunit of RNAP is a DNA-binding protein that conserved thymine found at the last position in −10 elements of contributes to specific promoter recognition (7), and that DksA promoters in most bacterial species. Thymine substitutions for ad- is a transcription factor that functions in conjunction with the enine at position −7 in the three rRNA promoters strongly in- second messenger ppGpp to regulate large numbers of bacterial creased intrinsic promoter activity, indicating that R.
    [Show full text]