CV Peratt 2019 Spring

Total Page:16

File Type:pdf, Size:1020Kb

CV Peratt 2019 Spring Curriculum Vita, Barry Peratt, Spring 2019 CURRICULUM VITA Barry Peratt Full Professor of Mathematics Department of Mathematics & Statistics, Winona State University I. Academic Degrees: • Ph.D. in Mathematics: August, 1996, University of Delaware, Newark, DE 19716-2553. GPA 3.94/4.00. • M.S. in Mathematics: May, 1991, University of Delaware, Newark, DE 19716-2553. GPA 3.92/4.00 • B.S. in Mathematics: May, 1989, Moravian College, Bethlehem, PA 18018-2316. GPA 3.83/4.00. II. Professional Certificates, Licenses, Honors: • edTPA Local Grader: trained in diagnostic grading the edTPA for local program purposes • Secondary Teaching Certification: PA Instructional I, Inductee Graduate • MAA-NCS Teacher of the Year: Spring 2018 (Mathematical Associate of America, North Central Section) • Baxter-Sloyer Teaching Award, University of Delaware, 1992 • Phi Delta Kappa Student Teacher of the Year Award, Moravian College, 1989 • Pi Mu Epsilon Honorary Mathematical Society, Moravian College, 1988-present III. Teaching WSU Employment History: Full Professor, 2010 to Present; Associate Professor, 2001 to 2010; Assistant Professor, 1996 to 2001. Responsible for teaching a wide variety of undergraduate mathematics courses. Heavily involved in curriculum reform of the Pre-Calculus, Calculus, Differential Equations, and Chaos Theory courses. Active in seminars concerning mathematics and pedagogy. IV. Non-Teaching Assignments or Other Activities: • Supervision of Teacher Candidates, Spring 2013 to Present: observe teacher candidates in middle school and secondary mathematics education (5-6 visits per semester per candidate), facilitate three seminars for candidates, advise candidates on completion of edTPA. • Consultant: for the Calculus and Applied Calculus texts by Hughes-Hallet, various times from 1997 to present V. Prior Experience (prior to WSU): • Widener University, Chester, PA: Math Center Lead Tutor, Fall 1995. Provided walk-in tutoring services to students in College Algebra, Calculus, Differential Equations, Statistics, Physics, Engineering, Computer Science, and graduate-level Real Analysis. • University of Delaware, Newark, DE: Math Insurance Program Co-Coordinator (program to enhance experience of minorities in engineering), Instructor (taught variety of undergraduate courses, utilizing various technologies such as Derive and Maple on SPARC Workstations). • Bethlehem Area School District, Bethlehem, PA: o Secondary Mathematics Teacher, 1993–1994 at Freedom High School. o Student Teacher, Spring 1989 at Nitschmann Middle and Freedom High School. o MathCounts Coach, Fall 1988 at East Hills Middle School. Successfully prepared eight top seventh grade students for regional level MathCounts competition. • Moravian College, Bethlehem, PA: Adjunct Faculty, Summer 1991. Taught Calculus I for non- mathematics majors and remedial Algebra using, almost eXclusively, a concept induction approach. • Other Employment: o Resident Geometer, Summer 1989. Worked with the Visual Geometry Project under a joint NSF grant to Moravian and Swarthmore. Project goal is to reintroduce solid geometry into the high school curriculum. I conducted research on the technical and historical aspects of the Platonic Solids and then created many hands-on activities for the Platonic Solids Workbook. The VGP materials, including the final version of the Platonic Solids Workbook, have been published by the Key Curriculum Press. Page 1 of 5 Curriculum Vita, Barry Peratt, Spring 2019 o Technical Consultant, Summer 1989, Dale Seymour Publications. Contracted as a technical consultant on their proposed republication of Susan and Peter Pearce’s Polyhedra Primer. VI. Peer-Reviewed Scholarly Publications: • The Topology of Tank Stirring, co-author with Judy A. Kennedy, Journal of Nonlinear Systems and Applications, 1(1), pp. 40-50 (2010) • Painting Your Way to Profit, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Is a Percent a Percent?, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Planning a Trip, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Mathematical Magic: Operations with Real Numbers, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Silk Screen Start-Up, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Solving Equations and Inequalities, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Looking for Patterns, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • How Big is Big?: Working with Exponents and Polynomials, co-author with Nicole Williams, Monterey Institute for Technology in Educations, to appear (2010) • Generic Properties of Altitude Functions, co-author with Judy A. Kennedy, Topology and its Applications, 106 (2000) 57-68 • Modeling Continuous Mixing of Granular Solids in a Rotating Drum, co-author with James A. Yorke, Physica D, 118, pp. 293-310 (1998) • Continuous Avalanche Mixing of Granular Solids in a Rotating Drum, co-author with James A. Yorke, Europhys. Lett., 35 (1), pp. 31-35 (1 July 1996) • A Creative Take-Home Exam, February 1995, Mathematics Teacher, Vol. 88, No. 2, pp. 169 & 172 • Platonic Solids Activity Book, assistant author and researcher, Key Curriculum Press, 1991 VII. Scholarly Presentations: • Leveraging Applications and Cooperative Learning to Enhance Student Motivation and Conceptual Understanding, MAA-NCS Sectional Meeting, Southwest Minnesota State University, Marshall, MN, 2018 • Topological Structures that Arise in Tank Stirring under Minimal Conditions, Mathematics Seminar, Winona State University, Winona, MN, 2013 • The Topology of Tank Stirring, Joint Meetings of the AMS/MAA, New Orleans, LA, 2011 • The Topology of Tank Stirring, AMS Regional Conference, Macalester College, St. Paul, MN, 2010 • Avalanche Mixing of Powders in a Rotating Drum, Mathematics and Computer Science Colloquium, Carleton College, Northfield, MN, 1999 • Avalanche Mixing of Powders in a Rotating Drum, SIAM Conference on Dynamical Systems, Snowbird, UT, 1998 • Properties of Generic Altitude Functions, Mathematics Seminar, Winona State University, Winona, MN, 1997 • Using the TI-82 to Aid Student Learning at Any Level, middle and high school mathematics and science teacher in-service presentation, Bethlehem Area School District, 1993 • Opportunities in Graduate School, Moravian College, Bethlehem, PA, 1992 • The Hopf Bifurcation in Galloping Power Lines, Seminar on Applied Mathematics, University of Delaware, Newark, DE, 1992 • Fractals: Can We Control Their Shape?, Seminar on Dynamical Systems, Department of Civil Engineering, University of Delaware, Newark, DE, 1992 Page 2 of 5 Curriculum Vita, Barry Peratt, Spring 2019 • Combinatorics and Polyhedra, Combinatorics Seminar, Moravian College, Bethlehem, PA, 1990 • Fractal Geometry, middle and high school mathematics and science teacher in-service presentation, Bethlehem Area School District, 1989 • Fractal Geometry: A New Dimension in Thought, regional Math Conference & Pi Mu Epsilon induction, Moravian College, 1988 • The Mathematics of Escher: Tilings of the Plane on the Macintosh, Science Day, Moravian College, Bethlehem, PA, 1988 VIII. Professional/Academic Memberships & Positions: • ACMS (Associaton of Christians in the Mathematical Sciences) • MAA (Mathematical Association of America) • NCTM (National Council of Teachers of Mathematics) IX. Professional Development Activities: • Conference: MAA-NCS Regional Meeting, October 2018, Southwest Minnesota State University, Marshall, MN • Conference: Joint Meetings of the MAA and AMS, January 2011, New Orleans, LA • Conference: AMS Regional Spring Conference, Macalester College, St. Paul, MN, April 2010 • Conference: ACMS, Point Loma Nazarene University, San Diego, CA, May 2001 • Conference: Joint Meetings of the MAA and AMS, January 2000, New Orleans, LA • Reading: Special course preparation for Chaos Theory (Math 280) and Math for Earth & Life Sciences II (Math 150/155), 1999-2000. Preparation for both of these courses required extensive reading and study • Seminar: Education in Singapore, Nancy Nutting, 1999, WSU • Conference: SIAM Conference on Dynamical Systems, May 1999, Snowbird, UT • Workshop: Teaching to the Majority, Dr. Sue Rosser, 1998 • Course: Introduction to Online Teaching Technologies with Gerry Bedore via the UCLA EXtension Program, Spring 1997, Grade: A • Workshop: SciMath Learning Project, Spring 1997, WSU • Conference: SIAM Conference on Dynamical Systems, May 1997, Snowbird, UT • Conference: Midwest Conference on Dynamical Systems, October 1996, Northwestern University. • Conference: SIAM Conference on Dynamical Systems, May 1995, Snowbird, UT • Conference: Annual Spring Topology Conferences, April 1995, University of Delaware. April 1993, University of South Carolina • Conference: MD/PSU Dynamical Systems Conferences, October 1994, Penn State University, State College, PA. Spring 1994, University of Maryland, College Park, MD • Conference: Mathematics Under Construction, NCTM, Spring 1994, Harrisburg, PA • Conference: The Head and Heart of Chaos: Nonlinear Dynamics in Biological Systems, June 1992, N.I.H., Bethesda, MD • Conference: MAA Regional Meetings, Fall 1989, Swarthmore College. Spring 1988, Moravian College. X. University and Community Service: • University o Chair, Specialties
Recommended publications
  • Mixing, Chaotic Advection, and Turbulence
    Annual Reviews www.annualreviews.org/aronline Annu. Rev. Fluid Mech. 1990.22:207-53 Copyright © 1990 hV Annual Reviews Inc. All r~hts reserved MIXING, CHAOTIC ADVECTION, AND TURBULENCE J. M. Ottino Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 1. INTRODUCTION 1.1 Setting The establishment of a paradigm for mixing of fluids can substantially affect the developmentof various branches of physical sciences and tech- nology. Mixing is intimately connected with turbulence, Earth and natural sciences, and various branches of engineering. However, in spite of its universality, there have been surprisingly few attempts to construct a general frameworkfor analysis. An examination of any library index reveals that there are almost no works textbooks or monographs focusing on the fluid mechanics of mixing from a global perspective. In fact, there have been few articles published in these pages devoted exclusively to mixing since the first issue in 1969 [one possible exception is Hill’s "Homogeneous Turbulent Mixing With Chemical Reaction" (1976), which is largely based on statistical theory]. However,mixing has been an important component in various other articles; a few of them are "Mixing-Controlled Supersonic Combustion" (Ferri 1973), "Turbulence and Mixing in Stably Stratified Waters" (Sherman et al. 1978), "Eddies, Waves, Circulation, and Mixing: Statistical Geofluid Mechanics" (Holloway 1986), and "Ocean Tur- bulence" (Gargett 1989). It is apparent that mixing appears in both indus- try and nature and the problems span an enormous range of time and length scales; the Reynolds numberin problems where mixing is important varies by 40 orders of magnitude(see Figure 1).
    [Show full text]
  • Stat 8112 Lecture Notes Stationary Stochastic Processes Charles J
    Stat 8112 Lecture Notes Stationary Stochastic Processes Charles J. Geyer April 29, 2012 1 Stationary Processes A sequence of random variables X1, X2, ::: is called a time series in the statistics literature and a (discrete time) stochastic process in the probability literature. A stochastic process is strictly stationary if for each fixed positive integer k the distribution of the random vector (Xn+1;:::;Xn+k) has the same distribution for all nonnegative integers n. A stochastic process having second moments is weakly stationary or sec- ond order stationary if the expectation of Xn is the same for all positive integers n and for each nonnegative integer k the covariance of Xn and Xn+k is the same for all positive integers n. 2 The Birkhoff Ergodic Theorem The Birkhoff ergodic theorem is to strictly stationary stochastic pro- cesses what the strong law of large numbers (SLLN) is to independent and identically distributed (IID) sequences. In effect, despite the different name, it is the SLLN for stationary stochastic processes. Suppose X1, X2, ::: is a strictly stationary stochastic process and X1 has expectation (so by stationary so do the rest of the variables). Write n 1 X X = X : n n i i=1 To introduce the Birkhoff ergodic theorem, it says a.s. Xn −! Y; (1) where Y is a random variable satisfying E(Y ) = E(X1). More can be said about Y , but we will have to develop some theory first. 1 The SSLN for IID sequences says the same thing as the Birkhoff ergodic theorem (1) except that in the SLLN for IID sequences the limit Y = E(X1) is constant.
    [Show full text]
  • Pointwise and L1 Mixing Relative to a Sub-Sigma Algebra
    POINTWISE AND L1 MIXING RELATIVE TO A SUB-SIGMA ALGEBRA DANIEL J. RUDOLPH Abstract. We consider two natural definitions for the no- tion of a dynamical system being mixing relative to an in- variant sub σ-algebra H. Both concern the convergence of |E(f · g ◦ T n|H) − E(f|H)E(g ◦ T n|H)| → 0 as |n| → ∞ for appropriate f and g. The weaker condition asks for convergence in L1 and the stronger for convergence a.e. We will see that these are different conditions. Our goal is to show that both these notions are robust. As is quite standard we show that one need only consider g = f and E(f|H) = 0, and in this case |E(f · f ◦ T n|H)| → 0. We will see rather easily that for L1 convergence it is enough to check an L2-dense family. Our major result will be to show the same is true for pointwise convergence making this a verifiable condition. As an application we will see that if T is mixing then for any ergodic S, S × T is relatively mixing with respect to the first coordinate sub σ-algebra in the pointwise sense. 1. Introduction Mixing properties for ergodic measure preserving systems gener- ally have versions “relative” to an invariant sub σ-algebra (factor algebra). For most cases the fundamental theory for the abso- lute case lifts to the relative case. For example one can say T is relatively weakly mixing with respect to a factor algebra H if 1) L2(µ) has no finite dimensional invariant submodules over the subspace of H-measurable functions, or Date: August 31, 2005.
    [Show full text]
  • On Li-Yorke Measurable Sensitivity
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 6, June 2015, Pages 2411–2426 S 0002-9939(2015)12430-6 Article electronically published on February 3, 2015 ON LI-YORKE MEASURABLE SENSITIVITY JARED HALLETT, LUCAS MANUELLI, AND CESAR E. SILVA (Communicated by Nimish Shah) Abstract. The notion of Li-Yorke sensitivity has been studied extensively in the case of topological dynamical systems. We introduce a measurable version of Li-Yorke sensitivity, for nonsingular (and measure-preserving) dynamical systems, and compare it with various mixing notions. It is known that in the case of nonsingular dynamical systems, a conservative ergodic Cartesian square implies double ergodicity, which in turn implies weak mixing, but the converses do not hold in general, though they are all equivalent in the finite measure- preserving case. We show that for nonsingular systems, an ergodic Cartesian square implies Li-Yorke measurable sensitivity, which in turn implies weak mixing. As a consequence we obtain that, in the finite measure-preserving case, Li-Yorke measurable sensitivity is equivalent to weak mixing. We also show that with respect to totally bounded metrics, double ergodicity implies Li-Yorke measurable sensitivity. 1. Introduction The notion of sensitive dependence for topological dynamical systems has been studied by many authors; see, for example, the works [3, 7, 10] and the references therein. Recently, various notions of measurable sensitivity have been explored in ergodic theory; see for example [2, 9, 11–14]. In this paper we are interested in formulating a measurable version of the topolog- ical notion of Li-Yorke sensitivity for the case of nonsingular and measure-preserving dynamical systems.
    [Show full text]
  • Chaos Theory
    By Nadha CHAOS THEORY What is Chaos Theory? . It is a field of study within applied mathematics . It studies the behavior of dynamical systems that are highly sensitive to initial conditions . It deals with nonlinear systems . It is commonly referred to as the Butterfly Effect What is a nonlinear system? . In mathematics, a nonlinear system is a system which is not linear . It is a system which does not satisfy the superposition principle, or whose output is not directly proportional to its input. Less technically, a nonlinear system is any problem where the variable(s) to be solved for cannot be written as a linear combination of independent components. the SUPERPOSITION PRINCIPLE states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). So a nonlinear system does not satisfy this principal. There are 3 criteria that a chaotic system satisfies 1) sensitive dependence on initial conditions 2) topological mixing 3) periodic orbits are dense 1) Sensitive dependence on initial conditions . This is popularly known as the "butterfly effect” . It got its name because of the title of a paper given by Edward Lorenz titled Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas? . The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to large-scale phenomena.
    [Show full text]
  • Turbulence, Fractals, and Mixing
    Turbulence, fractals, and mixing Paul E. Dimotakis and Haris J. Catrakis GALCIT Report FM97-1 17 January 1997 Firestone Flight Sciences Laboratory Guggenheim Aeronautical Laboratory Karman Laboratory of Fluid Mechanics and Jet Propulsion Pasadena Turbulence, fractals, and mixing* Paul E. Dimotakis and Haris J. Catrakis Graduate Aeronautical Laboratories California Institute of Technology Pasadena, California 91125 Abstract Proposals and experimenta1 evidence, from both numerical simulations and laboratory experiments, regarding the behavior of level sets in turbulent flows are reviewed. Isoscalar surfaces in turbulent flows, at least in liquid-phase turbulent jets, where extensive experiments have been undertaken, appear to have a geom- etry that is more complex than (constant-D) fractal. Their description requires an extension of the original, scale-invariant, fractal framework that can be cast in terms of a variable (scale-dependent) coverage dimension, Dd(X). The extension to a scale-dependent framework allows level-set coverage statistics to be related to other quantities of interest. In addition to the pdf of point-spacings (in 1-D), it can be related to the scale-dependent surface-to-volume (perimeter-to-area in 2-D) ratio, as well as the distribution of distances to the level set. The application of this framework to the study of turbulent -jet mixing indicates that isoscalar geometric measures are both threshold and Reynolds-number dependent. As regards mixing, the analysis facilitated by the new tools, as well as by other criteria, indicates en- hanced mixing with increasing Reynolds number, at least for the range of Reynolds numbers investigated. This results in a progressively less-complex level-set geom- etry, at least in liquid-phase turbulent jets, with increasing Reynolds number.
    [Show full text]
  • Blocking Conductance and Mixing in Random Walks
    Blocking conductance and mixing in random walks Ravindran Kannan Department of Computer Science Yale University L´aszl´oLov´asz Microsoft Research and Ravi Montenegro Georgia Institute of Technology Contents 1 Introduction 3 2 Continuous state Markov chains 7 2.1 Conductance and other expansion measures . 8 3 General mixing results 11 3.1 Mixing time estimates in terms of a parameter function . 11 3.2 Faster convergence to stationarity . 13 3.3 Constructing mixweight functions . 13 3.4 Explicit conductance bounds . 16 3.5 Finite chains . 17 3.6 Further examples . 18 4 Random walks in convex bodies 19 4.1 A logarithmic Cheeger inequality . 19 4.2 Mixing of the ball walk . 21 4.3 Sampling from a convex body . 21 5 Proofs I: Markov Chains 22 5.1 Proof of Theorem 3.1 . 22 5.2 Proof of Theorem 3.2 . 24 5.3 Proof of Theorem 3.3 . 26 1 6 Proofs II: geometry 27 6.1 Lemmas . 27 6.2 Proof of theorem 4.5 . 29 6.3 Proof of theorem 4.6 . 30 6.4 Proof of Theorem 4.3 . 32 2 Abstract The notion of conductance introduced by Jerrum and Sinclair [JS88] has been widely used to prove rapid mixing of Markov Chains. Here we introduce a bound that extends this in two directions. First, instead of measuring the conductance of the worst subset of states, we bound the mixing time by a formula that can be thought of as a weighted average of the Jerrum-Sinclair bound (where the average is taken over subsets of states with different sizes).
    [Show full text]
  • Chaos and Chaotic Fluid Mixing
    Snapshots of modern mathematics № 4/2014 from Oberwolfach Chaos and chaotic fluid mixing Tom Solomon Very simple mathematical equations can give rise to surprisingly complicated, chaotic dynamics, with be- havior that is sensitive to small deviations in the ini- tial conditions. We illustrate this with a single re- currence equation that can be easily simulated, and with mixing in simple fluid flows. 1 Introduction to chaos People used to believe that simple mathematical equations had simple solutions and complicated equations had complicated solutions. However, Henri Poincaré (1854–1912) and Edward Lorenz [4] showed that some remarkably simple math- ematical systems can display surprisingly complicated behavior. An example is the well-known logistic map equation: xn+1 = Axn(1 − xn), (1) where xn is a quantity (between 0 and 1) at some time n, xn+1 is the same quantity one time-step later and A is a given real number between 0 and 4. One of the most common uses of the logistic map is to model variations in the size of a population. For example, xn can denote the population of adult mayflies in a pond at some point in time, measured as a fraction of the maximum possible number the adult mayfly population can reach in this pond. Similarly, xn+1 denotes the population of the next generation (again, as a fraction of the maximum) and the constant A encodes the influence of various factors on the 1 size of the population (ability of pond to provide food, fraction of adults that typically reproduce, fraction of hatched mayflies not reaching adulthood, overall mortality rate, etc.) As seen in Figure 1, the behavior of the logistic system changes dramatically with changes in the parameter A.
    [Show full text]
  • Generalized Bernoulli Process with Long-Range Dependence And
    Depend. Model. 2021; 9:1–12 Research Article Open Access Jeonghwa Lee* Generalized Bernoulli process with long-range dependence and fractional binomial distribution https://doi.org/10.1515/demo-2021-0100 Received October 23, 2020; accepted January 22, 2021 Abstract: Bernoulli process is a nite or innite sequence of independent binary variables, Xi , i = 1, 2, ··· , whose outcome is either 1 or 0 with probability P(Xi = 1) = p, P(Xi = 0) = 1 − p, for a xed constant p 2 (0, 1). We will relax the independence condition of Bernoulli variables, and develop a generalized Bernoulli process that is stationary and has auto-covariance function that obeys power law with exponent 2H − 2, H 2 (0, 1). Generalized Bernoulli process encompasses various forms of binary sequence from an independent binary sequence to a binary sequence that has long-range dependence. Fractional binomial random variable is dened as the sum of n consecutive variables in a generalized Bernoulli process, of particular interest is when its variance is proportional to n2H , if H 2 (1/2, 1). Keywords: Bernoulli process, Long-range dependence, Hurst exponent, over-dispersed binomial model MSC: 60G10, 60G22 1 Introduction Fractional process has been of interest due to its usefulness in capturing long lasting dependency in a stochas- tic process called long-range dependence, and has been rapidly developed for the last few decades. It has been applied to internet trac, queueing networks, hydrology data, etc (see [3, 7, 10]). Among the most well known models are fractional Gaussian noise, fractional Brownian motion, and fractional Poisson process. Fractional Brownian motion(fBm) BH(t) developed by Mandelbrot, B.
    [Show full text]
  • Power Spectra and Mixing Properties of Strange Attractors
    POWER SPECTRA AND MIXING PROPERTIES OF STRANGE ATTRACTORS Doync Farmer, James Crutchfield. Harold Froehling, Norman Packard, and Robert Shaw* Dynamical Systems Group Physics Board of Studies University of California, Santa Cruz Santa Cruz. California 95064 INTRODUCTION Edward Lorenz used the phrase “deterministic nonperiodic flow” to describe the first example of what is now known as a “strange” or “chaotic” attra~tor.’-~ Nonperiodicity, as reflected by a broadband component in a power spectrum of a time series, is the characteristic by which chaos is currently experimentally identified. In principle, this identification is straightforward: Systems that are periodic or quasi- periodic have power spectra composed of delta functions; any dynamical system whose spectrum is not composed of delta functions is chaotic. We have found that, to the resolution of our numerical experiments, some strange attractors have power spectra that are superpositions of delta functions and broad backgrounds. As we shall show, strange attractors with this property, which we call phase coherence, are chaotic, yet, nonetheless. at least approach being periodic or quasi-periodic in a statistical sense. Under various names, this property has also been noted by Lorenz (“noisy peri~dicity”),~Ito et al. (“nonmixing ~haos”),~and the authors6 The existence of phase coherence can make it difficult to discriminate experimentally between chaotic and periodic behavior by means of a power spectrum. In this paper, we investigate the geometric basis of phase coherence and
    [Show full text]
  • Lecture 12 Ergodicity and Mixing
    Lecture 12 Ergodicity and Mixing February 11, 2008 1 Ergodicity Ergodicity studies the statistical properties of a dynamical system. The idea is that a measure is ergodic if asymptotically the time average of any oberservable (function) is the space average. (i.e. for A a measurabel set Pn i µ(A) = limn!1( i=1 χA(f (x)))=n) for almost every x 2 A.) Let T : X ! X be a measurable transformation and f : X ! R (could be C in general). Then we define (T∗f)(x) = f(T (x)) so T∗f is a function from X to R. We want to look at the statistical independence from f to n T∗ f. Let T be a measure preserving transformation on (X; B; µ) to itself. A function f : X ! R is essentially T -invariant if n µfx 2 X j f (T (x)) 6= f(x)g = 0 for all n 2 N: 1 An example of an essentially T -invariant function is T = Em, X = S with Lebesgue measure, and f(x) = 0 for all x 2 S1. A set A is A essentially T -invariant if χA is essentially T -invariant. So µ(T −1(A) 4 A) = 0 where A 4 B = (A − B) [ (B − A). Definition 1.1 A measure preserving transformation T is ergodic if any es- sentially T -invariant set has measure 0 or full measure. An equivalent definition is T is ergodic if any essentially T -invariant mea- surable function is constant mod 0.(Exercise) 1 Proposition 1.2 Let (X; B; µ) be a measure space and f : X ! R essen- tially invariant for a measure preserving transformation T on X.
    [Show full text]
  • Chaos Theory and Its Application in the Atmosphere
    Chaos Theory and its Application in the Atmosphere by XubinZeng Department of Atmospheric Science Colorado State University Fort Collins, Colorado Roger A. Pielke, P.I. NSF Grant #ATM-8915265 CHAOS THEORY AND ITS APPLICATION IN THE ATMOSPHERE Xubin Zeng Department of Atmospheric Science CoJorado State University Fort Collins, Colorado Summer, 1992 Atmospheric Science Paper No. 504 \llIlll~lIl1ll~I""I1~II~'I\1 U16400 7029194 ABSTRACT CHAOS THEORY AND ITS APPLICATION IN THE ATMOSPHERE Chaos theory is thoroughly reviewed, which includes the bifurcation and routes to tur­ bulence, and the characterization of chaos such as dimension, Lyapunov exponent, and Kolmogorov-Sinai entropy. A new method is developed to compute Lyapunov exponents from limited experimental data. Our method is tested on a variety of known model systems, and it is found that our algorithm can be used to obtain a reasonable Lyapunov­ exponent spectrum from only 5000 data points with a precision of 10-1 or 10-2 in 3- or 4-dimensional phase space, or 10,000 data points in 5-dimensional phase space. On 1:he basis of both the objective analyses of different methods for computing the Lyapunov exponents and our own experience, which is subjective, this is recommended as a good practical method for estiIpating the Lyapunov-exponent spectrum from short time series of low precision. The application of chaos is divided into three categories: observational data analysis, llew ideas or physical insights inspired by chaos, and numerical model output analysis. Corresponding with these categories, three subjects are studied. First, the fractal dimen­ sion, Lyapunov-exponent spectrum, Kolmogorov entropy, and predictability are evaluated from the observed time series of daily surface temperature and pressure over several regions of the United States and the North Atlantic Ocean with different climatic signal-to-noise ratios.
    [Show full text]