Filtering in Finance

Total Page:16

File Type:pdf, Size:1020Kb

Filtering in Finance Filtering in Finance Alireza Javaheri, RBC Capital Markets Delphine Lautier, Université Paris IX, Ecole Nationale Supérieure des Mines de Paris Alain Galli, Ecole Nationale Supérieure des Mines de Paris Abstract (EKF) as well as the Unscented Kalman Filter (UKF) similar to Kushner’s Nonlinear In this article we present an introduction to various Filtering algorithms and some of Filter. We also tackle the subject of Non-Gaussian filters and describe the Particle their applications to the world of Quantitative Finance. We shall first mention the Filtering (PF) algorithm. Lastly, we will apply the filters to the term structure model of fundamental case of Gaussian noises where we obtain the well-known Kalman Filter. commodity prices and the stochastic volatility model. Because of common nonlinearities, we will be discussing the Extended Kalman Filter 1 Filtering Further, we shall provide a mean to estimate the model parameters via the maximization of the likelihood function. The concept of filtering has long been used in Control Engineering and Signal Processing. Filtering is an iterative process that enables us to esti- 1.1 The Simple and Extended Kalman Filters mate a model’s parameters when the latter relies upon a large quantity 1.1.1 Background and Notations of observable and unobservable data. The Kalman Filter is fast and easy In this section we describe both the traditional Kalman Filter used for lin- to implement, despite the length and noisiness of the input data. ear systems and its extension to nonlinear systems known as the Extended We suppose we have a temporal time-series of observable data z k (e.g. Kalman Filter (EKF). The latter is based upon a first order linearization of stock prices as in Javaheri (2002), Wells (1996), interest rates as in Babbs the transition and measurement equations and therefore would coincide and Nowman (1999), Pennacchi (1991), futures prices as in Lautier (2000), with the traditional filter when the equations are linear. For a detailed Lautier and Galli (2000)) and a model using some unobservable time- introduction, see Harvey (1989) or Welch and Bishop (2002). series x k (e.g. volatility, correlation, convenience yield) where the index k Given a dynamic process x k following a transition equation corresponds to the time-step. This will allow us to construct an algo- = rithm containing a transition equation linking two consecutive unob- x k f(x k−1, wk) (1) servable states, and a measurement equation relating the observed data we suppose we have a measurement z such that to this hidden state. k The idea is to proceed in two steps: first we estimate the hidden state z k = h(x k, u k) (2) a priori by using all the information prior to that time-step. Then using this predicted value together with the new observation, we obtain a con- where wk and uk are two mutually-uncorrelated sequences of temporally- ditional a posteriori estimation of the state. uncorrelated Normal random-variables with zero means and covariance 4 In what follows we shall first tackle linear and nonlinear equations with matrices Q k, R k respectively . Moreover, wk is uncorrelated with x k−1 and Gaussian noises. We then will extend this idea to the Non-Gaussian case. u k uncorrelated with x k. 2 Wilmott magazine TECHNICAL ARTICLE 1 We denote the dimension of x k as nx, the dimension of w k as nw and Needless to say for a linear system, the function matrices are equal to so on. these Jacobians. This is the case for the simple Kalman Filter. We define the a priori process estimate as 1.1.2 The Algorithm The actual algorithm could be implemented as follows: ˆ − = x k E [x k] (3) (1) Initialization of x0 and P0 which is the estimation at time step k − 1 prior to the step k measurement. For k in 1...N Similarly, we define the a posteriori estimate (2) Time Update (Prediction) equations ˆ = | ˆ − = ˆ x k E [x k z k] (4) x k f(xk−1, 0) (8) which is the estimation at time step k after the measurement. and − − = − ˆ − t t We also have the corresponding estimation errors e k x k x k and = + P k A kPk−1A k W kQ k−1W k (9) ek = x k − xˆ k and the estimate error covariances (3-a) Innovation: We define − − −t P = E e e k k k ˆ− = ˆ − z k h(x k , 0) = t P k E e ke k (5) and = − ˆ− where the superscript t corresponds to the transpose operator. ν k z k z k In order to evaluate the above means and covariances we will need as the innovation process. the conditional densities p(x |z − ) and p(x |z ), which are determined k k 1 k k (3-b) Measurement Update (Filtering) equations iteratively via the Time Update and Measurement Update equations. The basic idea is to find the probability density function corresponding to a ˆ = ˆ − + x k x k K kν k (10) hidden state x k at time step k given all the observations z1:k up to that time. and = − − The Time Update step is based upon the Chapman-Kolmogorov equation P k (I K kH k)P k (11) with − − − p(x k|z1:k−1) = p(x k|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 = t t + t 1 K k P k H k(H kP k H k U kR kU k) (12) (6) = p(x k|xk−1)p(xk−1|z1:k−1)dxk−1 and I the Identity matrix. The above Kalman gain K k corresponds to the mean of the condition- via the Markov property. al distribution of x k upon the observation z k or equivalently, the matrix The Measurement Update step is based upon the Bayes rule that would minimize the mean square error P k within the class of linear estimators. p(zk|x k)p(x k|z1:k−1) This interpretation is based upon the following observation. Having x p(x k|z1:k) = (7) p(z k|z1:k−1) a Normally distributed random-variable with a mean mx and variance Pxx , with and z another Normally distributed random-variable with a mean mz and variance P , and having P = P the covariance between x and z, the con- p(z k|z1:k−1) = p(z k|x k)p(x k|z1:k−1)dx k zz zx xz ditional distribution of x|z is also Normal with A proof of the above is given in the appendix. mx|z = mx + K(z − mz) EKF is based on the linearization of the transition and measurement equations, and uses the conservation of Normal property within the class with = −1 of linear functions. We therefore define the Jacobian matrices of f with K Pxz Pzz respect to the state variable and the system noise as A k and W k respec- which corresponds to our Kalman gain. tively; and similarly for h, as H k and U k respectively. More accurately, for every row i and column j we have 1.1.3 Parameter Estimation For a parameter-set in the model, the calibration could be carried out = ˆ = ˆ Aij ∂fi/∂x j(xk−1, 0), Wij ∂fi/∂wj(xk−1, 0), via a Maximum Likelihood Estimator (MLE) or in case of conditionally ^ = ˆ − = ˆ − Gaussian state variables, a Quasi-Maximum Likelihood (QML) algorithm. Hij ∂hi/∂x j(x k , 0), Uij ∂hi/∂u j(x k , 0) Wilmott magazine 3 N | = 2 + − To do this we need to maximize k=1 p(z k z1:k−1), and given the where the scaling parameters α, β, κ and λ α (na κ) na will be cho- Normal form of this probability density function, taking the logarithm, sen for tuning. changing the signs and ignoring constant terms, this would be equiva- For k in 1...N lent to minimizing over the parameter-set (1-b) State Space Augmentation: As mentioned earlier, we concatenate the state vector with the system noise and the observation noise, and cre- N z − m L = ln(P ) + k z k (13) ate an augmented state vector for each time-step 1:N z k z k P = z k z k k 1 xk−1 a x − = wk−1 For the KF or EKF we have k 1 uk−1 − m = zˆ z k k and therefore xˆ k−1 and a a − xˆ − = E [x − |z k] = 0 P = H P Ht + U R Ut k 1 k 1 z k z k k k k k k k 0 and 1.2 The Unscented Kalman Filter and Kushner’s Pk−1 Pxw (k − 1|k − 1) 0 a = − | − − | − Nonlinear Filter Pk−1 Pxw (k 1 k 1) Pww (k 1 k 1) 0 1.2.1 Background and Notations 00Puu (k − 1|k − 1) Recently Julier and Uhlmann (1997) proposed a new extension of the (1-c) The Unscented Transformation: Following this, in order to use the Kalman Filter to Nonlinear systems, different from the EKF. The new Normal approximation, we need to construct the corresponding Sigma method called the Unscented Kalman Filter (UKF) will calculate the Points through the Unscented Transformation: mean to a higher order of accuracy than the EKF, and the covariance to a = ˆ a the same order of accuracy. χk−1(0) xk−1 Unlike the EKF, this method does not require any Jacobian calculation = ..
Recommended publications
  • Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing
    Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Achal Awasthi, B.S. Graduate Program in Department of Statistics The Ohio State University 2018 Master's Examination Committee: Radu Herbei,Ph.D., Advisor Laura S. Kubatko, Ph.D. c Copyright by Achal Awasthi 2018 Abstract In this thesis, we propose a generalized Heston model as a tool to estimate volatil- ity. We have used Approximate Bayesian Computing to estimate the parameters of the generalized Heston model. This model was used to examine the daily closing prices of the Shanghai Stock Exchange and the NIKKEI 225 indices. We found that this model was a good fit for shorter time periods around financial crisis. For longer time periods, this model failed to capture the volatility in detail. ii This is dedicated to my grandmothers, Radhika and Prabha, who have had a significant impact in my life. iii Acknowledgments I would like to thank my thesis supervisor, Dr. Radu Herbei, for his help and his availability all along the development of this project. I am also grateful to Dr. Laura Kubatko for accepting to be part of the defense committee. My gratitude goes to my parents, without their support and education I would not have had the chance to study worldwide. I would also like to express my gratitude towards my uncles, Kuldeep and Tapan, and Mr. Richard Rose for helping me transition smoothly to life in a different country.
    [Show full text]
  • Lévy Finance *[0.5Cm] Models and Results
    Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Calculus for L´evy Processes L´evy-Process Driven Financial Market Models Jump-Diffusion Models Merton-Model Kou-Model General L´evy Models Variance-Gamma model CGMY model GH models Variance-mean mixtures European Style Options Equivalent Martingale Measure Jump-Diffusion Models Variance-Gamma Model NIG Model Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Stochastic Integral for L´evyProcesses Let (Xt ) be a L´evy process with L´evy-Khintchine triplet (α, σ, ν(dx)). By the L´evy-It´odecomposition we know X = X (1) + X (2) + X (3), where the X (i) are independent L´evyprocesses. X (1) is a Brownian motion with drift, X (2) is a compound Poisson process with jump (3) distributed concentrated on R/(−1, 1) and X is a square-integrable martingale (which can be viewed as a limit of compensated compound Poisson processes with small jumps). We know how to define the stochastic integral with respect to any of these processes! Professor Dr. R¨udigerKiesel L´evyFinance Stochastic Calculus for L´evyProcesses L´evy-Process Driven Financial Market Models Jump-Diffusion Models General L´evyModels European Style Options Canonical Decomposition From the L´evy-It´odecomposition we deduce the canonical decomposition (useful for applying the general semi-martingale theory) Z t Z X (t) = αt + σW (t) + x µX − νX (ds, dx), 0 R where Z t Z X xµX (ds, dx) = ∆X (s) 0 R 0<s≤t and Z t Z Z t Z Z X X E xµ (ds, dx) = xν (ds, dx) = t xν(dx).
    [Show full text]
  • Pricing, Risk and Volatility in Subordinated Market Models
    risks Article Pricing, Risk and Volatility in Subordinated Market Models Jean-Philippe Aguilar 1,* , Justin Lars Kirkby 2 and Jan Korbel 3,4,5,6 1 Covéa Finance, Quantitative Research Team, 8-12 rue Boissy d’Anglas, FR75008 Paris, France 2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA; [email protected] 3 Section for the Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; [email protected] 4 Complexity Science Hub Vienna, Josefstädterstrasse 39, 1080 Vienna, Austria 5 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic 6 The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou Vˇeží4, 182 00 Prague 8, Czech Republic * Correspondence: jean-philippe.aguilar@covea-finance.fr Received: 26 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: We consider several market models, where time is subordinated to a stochastic process. These models are based on various time changes in the Lévy processes driving asset returns, or on fractional extensions of the diffusion equation; they were introduced to capture complex phenomena such as volatility clustering or long memory. After recalling recent results on option pricing in subordinated market models, we establish several analytical formulas for market sensitivities and portfolio performance in this class of models, and discuss some useful approximations when options are not far from the money. We also provide some tools for volatility modelling and delta hedging, as well as comparisons with numerical Fourier techniques.
    [Show full text]
  • Multi-Period Public Transport Design: a Novel Model and Solution Approaches
    S. Gelareh, S. Nickel Multi-period public transport design: A novel model and solution approaches Berichte des Fraunhofer ITWM, Nr. 139 (2008) © Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2008 ISSN 1434-9973 Bericht 139 (2008) Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbei tungsanlagen, ver- wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe. Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt. Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Fraunhofer-Platz 1 67663 Kaiserslautern Germany Telefon: +49 (0) 6 31/3 16 00-0 Telefax: +49 (0) 6 31/3 16 00-10 99 E-Mail: [email protected] Internet: www.itwm.fraunhofer.de Vorwort Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech- no- und Wirtschaftsmathematik bedeutsam sind. In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts konti- nuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissen- schaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Ma- thematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Be- richtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Disser- tationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.
    [Show full text]
  • Forecasting Security's Volatility Using Low-Frequency Historical Data
    Forecasting security’s volatility using low-frequency historical data, high-frequency historical data and option-implied volatility Huiling Yuana, Yong Zhoub,c, Zhiyuan Zhangd, Xiangyu Cuid,∗ aSchool of Statistics and Information, Shanghai University of International Business and Economics. bInstitute of Statistics and Interdisciplinary Sciences and School of Statistics, Faculty of Economics and Management, East China Normal University. cAcademy of Mathematics and Systems Sciences, Chinese Academy of Sciences. dSchool of Statistics and Management, Shanghai University of Finance and Economics. Abstract Low-frequency historical data, high-frequency historical data and option data are three major sources, which can be used to forecast the underlying security’s volatility. In this paper, we propose two econometric models, which integrate three information sources. In GARCH-Itˆo-OI model, we assume that the option-implied volatility can influence the security’s future volatility, and the option-implied volatility is treated as an observable exogenous variable. In GARCH- Itˆo-IV model, we assume that the option-implied volatility can not influence the security’s volatility directly, and the relationship between the option-implied volatility and the security’s volatility is constructed to extract useful information of the underlying security. After providing the quasi-maximum likelihood estimators for the parameters and establishing their asymptotic properties, we also conduct a series of simulation analysis and empirical analysis to compare the arXiv:1907.02666v1 [q-fin.ST] 5 Jul 2019 proposed models with other popular models in the literature. We find that when the sampling interval of the high-frequency data is 5 minutes, the GARCH-Itˆo-OI model and GARCH-Itˆo-IV model has better forecasting performance than other models.
    [Show full text]
  • Arbitrage Free Approximations to Candidate Volatility Surface Quotations
    Journal of Risk and Financial Management Article Arbitrage Free Approximations to Candidate Volatility Surface Quotations Dilip B. Madan 1,* and Wim Schoutens 2,* 1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (D.B.M.); [email protected] (W.S.) Received: 19 February 2019; Accepted: 10 April 2019; Published: 21 April 2019 Abstract: It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for SPY as at 8 February 2018. Keywords: bilateral gamma; fast Fourier transform; sato process; matrix exponentials JEL Classification: G10; G12; G13 1. Introduction A variety of arbitrage free models for approximating quoted option prices have been available for some time. The quotations are typically in terms of (Black and Scholes 1973; Merton 1973) implied volatilities for the traded strikes and maturities. Consequently, the set of such quotations is now popularly referred to as the volatility surface. Some of the models are nonparametric with the Dupire(1994) local volatility model being a popular example. The local volatility model is specified in terms of a deterministic function s(K, T) that expresses the local volatility for the stock if the stock were to be at level K at time T.
    [Show full text]
  • Informs 2007 Proceedings
    informs14th ® Applied Probability Conference July 9–11, 2007 Program Monday July 9, 2007 Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8 Track 9 Room CZ 4 CZ 5 CZ 10 CZ 11 CZ 12 CZ 13 CZ 14 CZ 15 CZ 16 9:00am - 9:15am Opening (Room: Blauwe Zaal) 9:15am - 10:15am Plenary - Peter Glynn (Room: Blauwe Zaal) MA Financial Random Fields Rare Event Asymptotic Scheduling Call Centers 1 MDP 1 Retrial Inventory 1 10:45am - 12:15pm Engineering 1 Simulation 1 Analysis 1 Queues Kou Kaj Dupuis Bassamboo / Borst / Koole Feinberg Artalejo Van Houtum Randhawa Wierman Keppo Scheffler Blanchet Lin Gupta Taylor Bispo Machihara Buyukkaramikli DeGuest Ruiz-Medina Glasserman Tezcan Ayesta Jongbloed Van der Laan Nobel Qiu Peng Kaj Juneja Gurvich Wierman Henderson Haijema Shin Timmer Weber Mahmoodi Dupuis Randhawa Winands Koole Feinberg Artalejo Van Houtum 12:45pm - 1.45pm Tutorial Philippe Robert MB Financial Percolation and Simulation 1 Stability of Stoch. Communication Many-server Games 1 Fluid Queues Search 2:00pm - 3:30pm Engineering 2 Related Topics Networks Systems 1 Models 1 Models Schoutens / Van den Berg Henderson Ramanan Choi Armony Economou Adan Klafter Valdivieso Werker Newman Chick Gamarnik Bae Tezcan Economou Dieker Benichou Koch Newman Haas Reiman Kim Jennings Amir Nazarathy Oshanin Scherer Meester Blanchet Williams Park Ward Dube Margolius Eliazar Valdivieso Kurtz Henderson Zachary Roubos Armony Economou Adan Metzler MC Exit Times Interacting Stoch. Prog. Stoch. Netw. & Flow-Level Markov Control Queueing Inventory 2 4:00pm - 5:30pm
    [Show full text]
  • The Heston Model - Stochastic Volatility and Approximation - ‌
    B.Sc. Thesis The Heston Model - Stochastic Volatility and Approximation - ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ Author Patrik Karlsson, [email protected] Supervisor Birger Nilsson (Department of Economics, Lund University) Abstract The crude assumption on log normal stock returns and constant volatility in the Black-Scholes model is a big constraint which constructs smile and skew inconsistent prices. The Heston model and its suggested approximation built on stochastic volatility are introduced and faced against the Black-Scholes model in hope of producing option prices where the smile and skew are taken into account.. As one will observe later on is that numerical calculation and approximation of the Heston model will provide us with more accurate calculations. ‌ ‌ Keywords Black-Scholes, Derivative Pricing, Heston, Monte Carlo, Volatility Smile. List of notation cdf - Normal cumulative density function. E [X] - Expected value of s.v. X. f (·) - Normal pdf. F (·) - Normal cdf. X Ft - Filtration, all information about X until time t. GBM - Geometric Brownian motion. K - Strike price. L - Likelihood function. MC - Monte Carlo. N (0; 1) - Normal distribution with mean 0 and variance 1. P - Historical measure. PDE - Partial differential equation. pdf - Probability density function. φ (·) - Normal pdf. Φ - Payoff. Π(S; t) - Derivative value, with underlying asset S at time t. Q - Risk neutral martingale measure. Rd - (d × 1) −dimensional real value. rt - Interest rate at time t. σ - Volatility. SDE - Stochastic differential equation. s.v. - Stochastic variable 3 St - Stock Value at time t. T - Time to maturity. θ- Parameter set. Θ - Parameter space. W - Wiener process, standard N (0; 1). ⊆ - Subset. - End of proof or derivation.
    [Show full text]
  • Some Mathematical Aspects of Market Impact Modeling by Alexander Schied and Alla Slynko
    EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowro´nski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes Jochen Blath Peter Imkeller Sylvie Rœlly Editors Editors: Jochen Blath Peter Imkeller Sylvie Rœlly Institut für Mathematik Institut für Mathematik Institut für Mathematik der Technische Universität Berlin Humboldt-Universität zu Berlin Universität Potsdam Straße des 17. Juni 136 Unter den Linden 6 Am Neuen Palais, 10 10623 Berlin 10099 Berlin 14469 Potsdam Germany Germany Germany [email protected] [email protected] [email protected] 2010 Mathematics Subject Classification: Primary: 60-06, Secondary 60Gxx, 60Jxx Key words: Stochastic processes, stochastic finance, stochastic analysis,statistical physics, stochastic differential equations ISBN 978-3-03719-072-2 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks.
    [Show full text]
  • Multilevel Particle Filters for L\'Evy-Driven Stochastic Differential
    Multilevel Particle Filters for L´evy-driven stochastic differential equations BY AJAY JASRA 1, KODY J. H. LAW 2 & PRINCE PEPRAH OSEI 1 1 Department of Statistics & Applied Probability, National University of Singapore, Singapore, 117546, SG. E-Mail: [email protected], [email protected] 2 School of Mathematics, University of Manchester, UK, AND Computer Science and Mathematics Division, Oak Ridge National Laboratory Oak Ridge, TN, 37831, USA. E-Mail: [email protected] Abstract We develop algorithms for computing expectations with respect to the laws of models associated to stochastic differential equations (SDEs) driven by pure L´evyprocesses. We consider filtering such processes and well as pricing of path dependent options. We propose a multilevel particle filter (MLPF) to address the computational issues involved in solving these continuum problems. We show via numerical simulations and theoretical results that under suitable assumptions regarding the discretization of the underlying driving L´evyproccess, our proposed method achieves optimal convergence rates: the cost to obtain MSE O(2) scales like O(−2) for our method, as compared with the standard particle filter O(−3). Keywords: L´evy-driven SDE; L´evyprocesses; Particle Filters; Multilevel Particle Filters; Barrier options. 1 Introduction arXiv:1804.04444v2 [stat.CO] 11 Jul 2018 L´evyprocesses have become very useful recently in several scientific disciplines. A non-exhaustive list includes physics, in the study of turbulence and quantum field theory; economics, for con- tinuous time-series models; insurance mathematics, for computation of insurance and risk, and mathematical finance, for pricing path dependent options. Earlier application of L´evyprocesses in modeling financial instruments dates back in [23] where a variance gamma process is used to model market returns.
    [Show full text]
  • Exact Likelihood Inference for Autoregressive Gamma Stochastic Volatility Models1
    Exact likelihood inference for autoregressive gamma stochastic volatility models1 Drew D. Creal Booth School of Business, University of Chicago First draft: April 10, 2012 Revised: September 12, 2012 Abstract Affine stochastic volatility models are widely applicable and appear regularly in empir- ical finance and macroeconomics. The likelihood function for this class of models is in the form of a high-dimensional integral that does not have a closed-form solution and is difficult to compute accurately. This paper develops a method to compute the likelihood function for discrete-time models that is accurate up to computer tolerance. The key insight is to integrate out the continuous-valued latent variance analytically leaving only a latent discrete variable whose support is over the non-negative integers. The likelihood can be computed using standard formulas for Markov-switching models. The maximum likelihood estimator of the unknown parameters can therefore be calculated as well as the filtered and smoothed estimates of the latent variance. Keywords: stochastic volatility; Markov-switching; Cox-Ingersoll-Ross; affine models; autoregressive-gamma process. JEL classification codes: C32, G32. 1I would like to thank Alan Bester, Chris Hansen, Robert Gramacy, Siem Jan Koopman, Neil Shephard, and Jing Cynthia Wu as well as seminar participants at the Triangle Econometrics Workshop (UNC Chapel Hill), University of Washington, Northwestern University Kellogg School of Management, and Erasmus Universiteit Rotterdam for their helpful comments. Correspondence: Drew D. Creal, University of Chicago Booth School of Business, 5807 South Woodlawn Avenue, Chicago, IL 60637. Email: [email protected] 1 1 Introduction Stochastic volatility models are essential tools in finance and increasingly in macroeconomics for modeling the uncertain variation of asset prices and macroeconomic time series.
    [Show full text]
  • 126 FM12 Abstracts
    126 FM12 Abstracts IC1 which happens in applications to barrier option pricing or Optimal Execution in a General One-Sided Limit structural credit risk models. In this talk, I will present Order Book novel adaptive discretization schemes for the simulation of stopped Lvy processes, which are several orders of magni- We construct an optimal execution strategy for the pur- tude faster than the traditional approaches based on uni- chase of a large number of shares of a financial asset over form discretization, and provide an explicit control of the a fixed interval of time. Purchases of the asset have a non- bias. The schemes are based on sharp asymptotic estimates linear impact on price, and this is moderated over time by for the exit probability and work by recursively adding dis- resilience in the limit-order book that determines the price. cretization dates in the parts of the trajectory which are The limit-order book is permitted to have arbitrary shape. close to the boundary, until a specified error tolerance is The form of the optimal execution strategy is to make an met. initial lump purchase and then purchase continuously for some period of time during which the rate of purchase is Peter Tankov set to match the order book resiliency. At the end of this Universit´e Paris-Diderot (Paris 7) period, another lump purchase is made, and following that [email protected] there is again a period of purchasing continuously at a rate set to match the order book resiliency. At the end of this second period, there is a final lump purchase.
    [Show full text]