Hodge Theory on Metric Spaces Laurent Bartholdi∗ Georg-August-Universit¨atG¨ottingen Deutschland Thomas Schick∗ Nat Smale Georg-August-Universit¨atG¨ottingen University of Utah Deutschland Steve Smaley City University of Hong Kong With an appendix by Anthony W. Baker z Mathematics and Computing Technology The Boeing Company. Last compiled December 1, 2009; last edited December 1, by LB Abstract Hodge theory is a beautiful synthesis of geometry, topology, and anal- ysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the math- ematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional α-scale homology. 1 Introduction Hodge Theory [21] studies the relationships of topology, functional analysis and geometry of a manifold. It extends the theory of the Laplacian on domains of Euclidean space or on a manifold. ∗email:
[email protected] and
[email protected] www: http://www.uni-math.gwdg.de/schick Laurent Bartholdi and Thomas Schick were partially supported by the Courant Research Center \Higher order structures in Mathematics" of the German Initiative of Excellence ySteve Smale was supported in part by the NSF, and the Toyota Technological Institute, Chicago zemail:
[email protected] 1 2 Laurent Bartholdi, Thomas Schick, Nat Smale, Steve Smale However, there are a number of spaces, not manifolds, which could ben- efit from an extension of Hodge theory, and that is the motivation here.